气泡溶解可视化作为一种测量溶解氮浓度的方法

Taisuke Sato, T. Yamashita, K. Ando
{"title":"气泡溶解可视化作为一种测量溶解氮浓度的方法","authors":"Taisuke Sato, T. Yamashita, K. Ando","doi":"10.1115/ajkfluids2019-5166","DOIUrl":null,"url":null,"abstract":"\n In ultrasonic cleaning, violent cavitation bubble dynamics causes material damage to cleaning surfaces, which is called cavitation erosion. The control of the dissolved gas concentration in cleaning liquid is effective to avoid cavitation erosion. The dissolved oxygen (DO) concentration is easily measured by a commercial DO meter, but the dissolved nitrogen (DN) concentration in water where multiple gas species are dissolved cannot be accurately measured with a commercially available DN meter. Therefore, it is important to construct a new method of measurement of DN concentration. In this study, we visualize the diffusion driven dissolution of bubble in air-saturated water and degassed water. The Epstein-Plesset theory considering multiple gas species is derived and compared with the experimental result where the DN concentration is treated as a fitting parameter in order to estimate the unknown DN concentration. Results indicates that the DN concentration can be measured by comparison between the theory and the relatively slow dissolution of bubble.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of Bubble Dissolution As a Means to Measure Dissolved Nitrogen Concentration\",\"authors\":\"Taisuke Sato, T. Yamashita, K. Ando\",\"doi\":\"10.1115/ajkfluids2019-5166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In ultrasonic cleaning, violent cavitation bubble dynamics causes material damage to cleaning surfaces, which is called cavitation erosion. The control of the dissolved gas concentration in cleaning liquid is effective to avoid cavitation erosion. The dissolved oxygen (DO) concentration is easily measured by a commercial DO meter, but the dissolved nitrogen (DN) concentration in water where multiple gas species are dissolved cannot be accurately measured with a commercially available DN meter. Therefore, it is important to construct a new method of measurement of DN concentration. In this study, we visualize the diffusion driven dissolution of bubble in air-saturated water and degassed water. The Epstein-Plesset theory considering multiple gas species is derived and compared with the experimental result where the DN concentration is treated as a fitting parameter in order to estimate the unknown DN concentration. Results indicates that the DN concentration can be measured by comparison between the theory and the relatively slow dissolution of bubble.\",\"PeriodicalId\":322380,\"journal\":{\"name\":\"Volume 5: Multiphase Flow\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Multiphase Flow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在超声波清洗中,剧烈的空化气泡动力学会对清洗表面造成物质损伤,称为空化侵蚀。控制清洗液中溶解气体浓度是避免气蚀的有效方法。溶解氧(DO)浓度很容易用商用DO计测量,但溶解多种气体的水中溶解氮(DN)浓度不能用商用DN计精确测量。因此,建立一种新的测定DN浓度的方法具有重要的意义。在本研究中,我们可视化了气泡在空气饱和水和脱气水中的扩散驱动溶解。推导了考虑多种气体的Epstein-Plesset理论,并与以DN浓度作为拟合参数估计未知DN浓度的实验结果进行了比较。结果表明,通过理论和气泡相对缓慢溶解的比较,可以测量出DN浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of Bubble Dissolution As a Means to Measure Dissolved Nitrogen Concentration
In ultrasonic cleaning, violent cavitation bubble dynamics causes material damage to cleaning surfaces, which is called cavitation erosion. The control of the dissolved gas concentration in cleaning liquid is effective to avoid cavitation erosion. The dissolved oxygen (DO) concentration is easily measured by a commercial DO meter, but the dissolved nitrogen (DN) concentration in water where multiple gas species are dissolved cannot be accurately measured with a commercially available DN meter. Therefore, it is important to construct a new method of measurement of DN concentration. In this study, we visualize the diffusion driven dissolution of bubble in air-saturated water and degassed water. The Epstein-Plesset theory considering multiple gas species is derived and compared with the experimental result where the DN concentration is treated as a fitting parameter in order to estimate the unknown DN concentration. Results indicates that the DN concentration can be measured by comparison between the theory and the relatively slow dissolution of bubble.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1