基于二面角的蛋白质结构降维比较

N. Kandiraju, S. Dua, S. Conrad
{"title":"基于二面角的蛋白质结构降维比较","authors":"N. Kandiraju, S. Dua, S. Conrad","doi":"10.1109/ITCC.2005.131","DOIUrl":null,"url":null,"abstract":"Structural comparison of proteins is considered as one of the highly focused research areas in the field of bioinformatics. Structural similarity estimation techniques using singular geometric parameters derived from spatial coordinates of protein structural atoms have been reported previously, but it is also ascertained that a single geometric parameter based structural estimation can result in misconstrued classification and functional interpretation. In this paper we propose a novel geometric parameters based comparison protocol that uses previously unexplored pair of dihedral angles NC/sub a/NC/sub a/ and NCNC for similarity search. An orthonormal transformation is employed on the two-dimensional distribution for feature extraction and selective feature-space is represented in an indexing schema later used for similarity calibration. The results demonstrate the success of this dimensionality reduction based similarity measure in performing a rapid and length-independent similarity analysis of the protein structures.","PeriodicalId":326887,"journal":{"name":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dihedral angle based dimensionality reduction for protein structural comparison\",\"authors\":\"N. Kandiraju, S. Dua, S. Conrad\",\"doi\":\"10.1109/ITCC.2005.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural comparison of proteins is considered as one of the highly focused research areas in the field of bioinformatics. Structural similarity estimation techniques using singular geometric parameters derived from spatial coordinates of protein structural atoms have been reported previously, but it is also ascertained that a single geometric parameter based structural estimation can result in misconstrued classification and functional interpretation. In this paper we propose a novel geometric parameters based comparison protocol that uses previously unexplored pair of dihedral angles NC/sub a/NC/sub a/ and NCNC for similarity search. An orthonormal transformation is employed on the two-dimensional distribution for feature extraction and selective feature-space is represented in an indexing schema later used for similarity calibration. The results demonstrate the success of this dimensionality reduction based similarity measure in performing a rapid and length-independent similarity analysis of the protein structures.\",\"PeriodicalId\":326887,\"journal\":{\"name\":\"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITCC.2005.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2005.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

蛋白质结构比较一直是生物信息学研究的热点之一。先前已经报道了使用基于蛋白质结构原子空间坐标的单一几何参数的结构相似性估计技术,但也确定了基于单一几何参数的结构估计可能导致错误的分类和功能解释。在本文中,我们提出了一种新的基于几何参数的比较协议,该协议使用以前未开发的二面角对NC/sub a/NC/sub a/和NCNC进行相似性搜索。在二维分布上采用标准正交变换进行特征提取,选择特征空间用索引模式表示,用于相似性校准。结果表明,这种基于降维的相似性度量在执行蛋白质结构的快速和长度无关的相似性分析方面取得了成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dihedral angle based dimensionality reduction for protein structural comparison
Structural comparison of proteins is considered as one of the highly focused research areas in the field of bioinformatics. Structural similarity estimation techniques using singular geometric parameters derived from spatial coordinates of protein structural atoms have been reported previously, but it is also ascertained that a single geometric parameter based structural estimation can result in misconstrued classification and functional interpretation. In this paper we propose a novel geometric parameters based comparison protocol that uses previously unexplored pair of dihedral angles NC/sub a/NC/sub a/ and NCNC for similarity search. An orthonormal transformation is employed on the two-dimensional distribution for feature extraction and selective feature-space is represented in an indexing schema later used for similarity calibration. The results demonstrate the success of this dimensionality reduction based similarity measure in performing a rapid and length-independent similarity analysis of the protein structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Component metadata management and publication for the grid A mathematical investigation on retrieval performance evaluation measures of information retrieval algorithm Single-parameter blackjack betting systems inspired by scatter search A time-series biclustering algorithm for revealing co-regulated genes A methodology for evaluating agent toolkits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1