设备还是用户:在个人规模的多设备环境中重新思考联邦学习

Hyunsung Cho, Akhil Mathur, F. Kawsar
{"title":"设备还是用户:在个人规模的多设备环境中重新思考联邦学习","authors":"Hyunsung Cho, Akhil Mathur, F. Kawsar","doi":"10.1145/3485730.3493449","DOIUrl":null,"url":null,"abstract":"We are witnessing a trend of users owning multiple data-generating wearable and IoT devices that continuously capture sensor data pertaining to a user's activities and context. Federated Learning is a potential technique to derive meaningful insights from this sensor data in a privacy-preserving way without revealing the raw sensor data to a central server. In this paper, we introduce a new problem setting in this multi-device context called Federated Learning in Multi-Device Local Networks (FL-MDLN). We identify core challenges for FL-MDLN in relation to its federation architecture, and statistical and systems heterogeneity across multiple users and multiple devices. Then, we introduce a new user-as-client (UAC) federation architecture, and propose various device selection strategies to counter statistical and systems heterogeneity in FL-MDLN. Early empirical findings show that our proposed techniques improve model test accuracy as well as battery power efficiency in FL. Based on these findings, we elucidate open research questions and future work in FL-MDLN.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Device or User: Rethinking Federated Learning in Personal-Scale Multi-Device Environments\",\"authors\":\"Hyunsung Cho, Akhil Mathur, F. Kawsar\",\"doi\":\"10.1145/3485730.3493449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are witnessing a trend of users owning multiple data-generating wearable and IoT devices that continuously capture sensor data pertaining to a user's activities and context. Federated Learning is a potential technique to derive meaningful insights from this sensor data in a privacy-preserving way without revealing the raw sensor data to a central server. In this paper, we introduce a new problem setting in this multi-device context called Federated Learning in Multi-Device Local Networks (FL-MDLN). We identify core challenges for FL-MDLN in relation to its federation architecture, and statistical and systems heterogeneity across multiple users and multiple devices. Then, we introduce a new user-as-client (UAC) federation architecture, and propose various device selection strategies to counter statistical and systems heterogeneity in FL-MDLN. Early empirical findings show that our proposed techniques improve model test accuracy as well as battery power efficiency in FL. Based on these findings, we elucidate open research questions and future work in FL-MDLN.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3493449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3493449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们正在见证一种趋势,即用户拥有多个可生成数据的可穿戴设备和物联网设备,这些设备可以持续捕获与用户活动和环境相关的传感器数据。联邦学习是一种潜在的技术,可以在不向中央服务器透露原始传感器数据的情况下,以保护隐私的方式从传感器数据中获得有意义的见解。在本文中,我们在这种多设备环境中引入了一个新的问题设置,称为多设备本地网络中的联邦学习(FL-MDLN)。我们确定了FL-MDLN的核心挑战,涉及其联邦体系结构,以及跨多个用户和多个设备的统计和系统异质性。然后,我们引入了一个新的用户即客户端(UAC)联邦架构,并提出了各种设备选择策略来对抗FL-MDLN中的统计和系统异质性。早期的实证研究结果表明,我们提出的技术提高了FL的模型测试精度和电池功率效率。基于这些发现,我们阐明了FL- mdln的开放性研究问题和未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Device or User: Rethinking Federated Learning in Personal-Scale Multi-Device Environments
We are witnessing a trend of users owning multiple data-generating wearable and IoT devices that continuously capture sensor data pertaining to a user's activities and context. Federated Learning is a potential technique to derive meaningful insights from this sensor data in a privacy-preserving way without revealing the raw sensor data to a central server. In this paper, we introduce a new problem setting in this multi-device context called Federated Learning in Multi-Device Local Networks (FL-MDLN). We identify core challenges for FL-MDLN in relation to its federation architecture, and statistical and systems heterogeneity across multiple users and multiple devices. Then, we introduce a new user-as-client (UAC) federation architecture, and propose various device selection strategies to counter statistical and systems heterogeneity in FL-MDLN. Early empirical findings show that our proposed techniques improve model test accuracy as well as battery power efficiency in FL. Based on these findings, we elucidate open research questions and future work in FL-MDLN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1