使用条件随机场的活动识别

Megha Agarwal, Peter A. Flach
{"title":"使用条件随机场的活动识别","authors":"Megha Agarwal, Peter A. Flach","doi":"10.1145/2790044.2790045","DOIUrl":null,"url":null,"abstract":"Activity Recognition is an integral component of ubiquitous computing. Recognizing an activity is a challenging task since activities can be concurrent, interleaved or ambiguous and can consist of multiple actors (which would require parallel activity recognition). This paper investigates how the discriminative nature of Conditional Random Fields (CRF) can be exploited to enhance the accuracy of recognizing activities when compared to that achieved using generative models. It aims to apply CRF to recognize complex activities, analyze the model trained by CRF and evaluate the performance of CRF against existing models using Stochastic Gradient Descent (which is suitable for online learning).","PeriodicalId":351171,"journal":{"name":"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Activity recognition using conditional random field\",\"authors\":\"Megha Agarwal, Peter A. Flach\",\"doi\":\"10.1145/2790044.2790045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity Recognition is an integral component of ubiquitous computing. Recognizing an activity is a challenging task since activities can be concurrent, interleaved or ambiguous and can consist of multiple actors (which would require parallel activity recognition). This paper investigates how the discriminative nature of Conditional Random Fields (CRF) can be exploited to enhance the accuracy of recognizing activities when compared to that achieved using generative models. It aims to apply CRF to recognize complex activities, analyze the model trained by CRF and evaluate the performance of CRF against existing models using Stochastic Gradient Descent (which is suitable for online learning).\",\"PeriodicalId\":351171,\"journal\":{\"name\":\"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2790044.2790045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790044.2790045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

活动识别是普适计算的重要组成部分。识别活动是一项具有挑战性的任务,因为活动可以是并发的、交错的或模糊的,并且可以由多个参与者组成(这需要并行的活动识别)。本文研究了与使用生成模型相比,如何利用条件随机场(CRF)的判别性来提高识别活动的准确性。它的目标是应用CRF来识别复杂的活动,分析由CRF训练的模型,并使用随机梯度下降(适合在线学习)来评估CRF与现有模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activity recognition using conditional random field
Activity Recognition is an integral component of ubiquitous computing. Recognizing an activity is a challenging task since activities can be concurrent, interleaved or ambiguous and can consist of multiple actors (which would require parallel activity recognition). This paper investigates how the discriminative nature of Conditional Random Fields (CRF) can be exploited to enhance the accuracy of recognizing activities when compared to that achieved using generative models. It aims to apply CRF to recognize complex activities, analyze the model trained by CRF and evaluate the performance of CRF against existing models using Stochastic Gradient Descent (which is suitable for online learning).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on measuring heart- and respiration-rate via wrist-worn accelerometer-based seismocardiography (SCG) in comparison to commonly applied technologies RFID-based compound identification in wet laboratories with google glass A review and quantitative comparison of methods for kinect calibration Exploiting thread-level parallelism in template-based gesture recognition with dynamic time warping Exploring vibrotactile feedback on the body and foot for the purpose of pedestrian navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1