PIC第四个挑战:语义辅助的多特征编码和多头解码用于密集视频字幕

Yifan Lu, Ziqi Zhang, Yuxin Chen, Chunfen Yuan, Bing Li, Weiming Hu
{"title":"PIC第四个挑战:语义辅助的多特征编码和多头解码用于密集视频字幕","authors":"Yifan Lu, Ziqi Zhang, Yuxin Chen, Chunfen Yuan, Bing Li, Weiming Hu","doi":"10.1145/3552455.3555816","DOIUrl":null,"url":null,"abstract":"The task of Dense Video Captioning (DVC) aims to generate captions with timestamps for multiple events in one video. Semantic information plays an important role for both localization and description of DVC. We present a semantic-assisted dense video captioning model based on the encoding-decoding framework. In the encoding stage, we design a concept detector to extract semantic information, which is then fused with multi-modal visual features to sufficiently represent the input video. In the decoding stage, we design a classification head, paralleled with the localization and captioning heads, to provide semantic supervision. Our method achieves significant improvements on the YouMakeup dataset \\citewang2019youmakeup under DVC evaluation metrics and achieves high performance in the Makeup Dense Video Captioning (MDVC) task of \\hrefhttp://picdataset.com/challenge/task/mdvc/ PIC 4th Challenge.","PeriodicalId":309164,"journal":{"name":"Proceedings of the 4th on Person in Context Workshop","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PIC 4th Challenge: Semantic-Assisted Multi-Feature Encoding and Multi-Head Decoding for Dense Video Captioning\",\"authors\":\"Yifan Lu, Ziqi Zhang, Yuxin Chen, Chunfen Yuan, Bing Li, Weiming Hu\",\"doi\":\"10.1145/3552455.3555816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of Dense Video Captioning (DVC) aims to generate captions with timestamps for multiple events in one video. Semantic information plays an important role for both localization and description of DVC. We present a semantic-assisted dense video captioning model based on the encoding-decoding framework. In the encoding stage, we design a concept detector to extract semantic information, which is then fused with multi-modal visual features to sufficiently represent the input video. In the decoding stage, we design a classification head, paralleled with the localization and captioning heads, to provide semantic supervision. Our method achieves significant improvements on the YouMakeup dataset \\\\citewang2019youmakeup under DVC evaluation metrics and achieves high performance in the Makeup Dense Video Captioning (MDVC) task of \\\\hrefhttp://picdataset.com/challenge/task/mdvc/ PIC 4th Challenge.\",\"PeriodicalId\":309164,\"journal\":{\"name\":\"Proceedings of the 4th on Person in Context Workshop\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th on Person in Context Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3552455.3555816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th on Person in Context Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3552455.3555816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

密集视频字幕(DVC)的任务是为一个视频中的多个事件生成带有时间戳的字幕。语义信息对于DVC的定位和描述都起着重要的作用。提出了一种基于编解码框架的语义辅助密集视频字幕模型。在编码阶段,我们设计了一个概念检测器来提取语义信息,然后将其与多模态视觉特征融合以充分表征输入视频。在解码阶段,我们设计了一个分类头,与定位头和字幕头并行,以提供语义监督。我们的方法在DVC评价指标下对you化妆数据集\ citewang2019you化妆进行了显著改进,并在\hrefhttp://picdataset.com/challenge/task/mdvc/ PIC第四次挑战赛的化妆密集视频字幕(MDVC)任务中取得了高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIC 4th Challenge: Semantic-Assisted Multi-Feature Encoding and Multi-Head Decoding for Dense Video Captioning
The task of Dense Video Captioning (DVC) aims to generate captions with timestamps for multiple events in one video. Semantic information plays an important role for both localization and description of DVC. We present a semantic-assisted dense video captioning model based on the encoding-decoding framework. In the encoding stage, we design a concept detector to extract semantic information, which is then fused with multi-modal visual features to sufficiently represent the input video. In the decoding stage, we design a classification head, paralleled with the localization and captioning heads, to provide semantic supervision. Our method achieves significant improvements on the YouMakeup dataset \citewang2019youmakeup under DVC evaluation metrics and achieves high performance in the Makeup Dense Video Captioning (MDVC) task of \hrefhttp://picdataset.com/challenge/task/mdvc/ PIC 4th Challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STVGFormer Cascaded Decoding and Multi-Stage Inference for Spatio-Temporal Video Grounding Fine-grained Video Captioning via Precise Key Point Positioning Exploiting Feature Diversity for Make-up Temporal Video Grounding Human-centric Spatio-Temporal Video Grounding via the Combination of Mutual Matching Network and TubeDETR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1