分层数据聚类中聚类个数的自动估计

C. Zang, Bo Chen
{"title":"分层数据聚类中聚类个数的自动估计","authors":"C. Zang, Bo Chen","doi":"10.1109/MESA.2010.5552062","DOIUrl":null,"url":null,"abstract":"Emergent pattern recognition is crucially needed for a real-time monitoring network to recognize emerging behavior of a physical system from sensor measurement data. To achieve effective emergent pattern recognition, one of the challenging problems is to determine the number of data clusters automatically. This paper studies the performance of the model-based clustering approach and using the knee of an evaluation graph for the estimation of the number of clusters. The working principle of these two methods is presented in the article. Both methods have been used for the classification of damage patterns for a benchmark civil structure. The performance of these two methods on determining the number of clusters and classification success rate is discussed.","PeriodicalId":406358,"journal":{"name":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic estimation the number of clusters in hierarchical data clustering\",\"authors\":\"C. Zang, Bo Chen\",\"doi\":\"10.1109/MESA.2010.5552062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emergent pattern recognition is crucially needed for a real-time monitoring network to recognize emerging behavior of a physical system from sensor measurement data. To achieve effective emergent pattern recognition, one of the challenging problems is to determine the number of data clusters automatically. This paper studies the performance of the model-based clustering approach and using the knee of an evaluation graph for the estimation of the number of clusters. The working principle of these two methods is presented in the article. Both methods have been used for the classification of damage patterns for a benchmark civil structure. The performance of these two methods on determining the number of clusters and classification success rate is discussed.\",\"PeriodicalId\":406358,\"journal\":{\"name\":\"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MESA.2010.5552062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2010.5552062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

紧急模式识别是实时监测网络从传感器测量数据中识别物理系统新行为的关键。为了实现有效的紧急模式识别,自动确定数据簇的数量是一个具有挑战性的问题。本文研究了基于模型的聚类方法的性能,并利用评价图的膝部来估计聚类的数量。本文介绍了这两种方法的工作原理。将这两种方法应用于某基准土建结构的损伤模式分类。讨论了这两种方法在确定聚类数量和分类成功率方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic estimation the number of clusters in hierarchical data clustering
Emergent pattern recognition is crucially needed for a real-time monitoring network to recognize emerging behavior of a physical system from sensor measurement data. To achieve effective emergent pattern recognition, one of the challenging problems is to determine the number of data clusters automatically. This paper studies the performance of the model-based clustering approach and using the knee of an evaluation graph for the estimation of the number of clusters. The working principle of these two methods is presented in the article. Both methods have been used for the classification of damage patterns for a benchmark civil structure. The performance of these two methods on determining the number of clusters and classification success rate is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On distributed order low-pass filter Key technologies of pre-processing and post-processing methods for embedded automatic speech recognition systems A two-stage calibration method for low-cost UAV attitude estimation using infrared sensor Motion planning for multi-link robots using Artificial Potential Fields and modified Simulated Annealing An autonomic mobile agent-based system for distributed job shop scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1