压缩感知中规范正则化的可辨识性及块稀疏合成算法

F. Turcu, C. Dossal, Marc Nicodeme
{"title":"压缩感知中规范正则化的可辨识性及块稀疏合成算法","authors":"F. Turcu, C. Dossal, Marc Nicodeme","doi":"10.1109/SYNASC.2016.029","DOIUrl":null,"url":null,"abstract":"In the paper we give a characterization of identifiability for regularizations with gauges of compact convexes. This extends the classic identifiability results from the standard l1-regularization framework in compressive sensing. We show that the standard dual certificate techniques can no longer work by themselves ouside the polytope case. We then apply the general characterization to the caseof block-sparse regularizations and obtain an identification algorithm based on a combination of the standard duality and a convex-projection technique.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifiability for Gauge Regularizations and Algorithms for Block-Sparse Synthesis in Compressive Sensing\",\"authors\":\"F. Turcu, C. Dossal, Marc Nicodeme\",\"doi\":\"10.1109/SYNASC.2016.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we give a characterization of identifiability for regularizations with gauges of compact convexes. This extends the classic identifiability results from the standard l1-regularization framework in compressive sensing. We show that the standard dual certificate techniques can no longer work by themselves ouside the polytope case. We then apply the general characterization to the caseof block-sparse regularizations and obtain an identification algorithm based on a combination of the standard duality and a convex-projection technique.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了紧凸规正则化的可辨识性的一个表征。这扩展了压缩感知中标准11 -正则化框架的经典可识别性结果。我们证明了标准的双证书技术在多面体情况之外不能再单独工作。然后,我们将一般表征应用于块稀疏正则化的情况,并获得了一种基于标准对偶和凸投影技术相结合的识别算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifiability for Gauge Regularizations and Algorithms for Block-Sparse Synthesis in Compressive Sensing
In the paper we give a characterization of identifiability for regularizations with gauges of compact convexes. This extends the classic identifiability results from the standard l1-regularization framework in compressive sensing. We show that the standard dual certificate techniques can no longer work by themselves ouside the polytope case. We then apply the general characterization to the caseof block-sparse regularizations and obtain an identification algorithm based on a combination of the standard duality and a convex-projection technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1