采用聚类分层聚类对人脸图像进行分组,改进了基于CBIR的人脸识别系统

M. Fachrurrozi, Clara Fin Badillah, Saparudin, Junia Erlina, Erwin, Mardiana, Auzan Lazuardi
{"title":"采用聚类分层聚类对人脸图像进行分组,改进了基于CBIR的人脸识别系统","authors":"M. Fachrurrozi, Clara Fin Badillah, Saparudin, Junia Erlina, Erwin, Mardiana, Auzan Lazuardi","doi":"10.1109/ICODSE.2017.8285868","DOIUrl":null,"url":null,"abstract":"The grouping of face images can be done automatically using the Agglomerative Hierarchical Clustering (AHC) algorithm. The pre-processing performed is feature extraction in getting the face image vector feature. The AHC algorithm performs grouping using linkage average, single, and complete method. Grouping face images can help improve the search speed of the CBIR based face recognition system. The cluster validation test uses the value of Cophenetic Correlation Coefficien (CCC). From the test results, it is known that the complete method has a higher CCC value than other methods, that is equal to 0.904938 with the difference value of 0.127558 on single method and the difference of 0.02291 on the average method. The face recognition system using pre-processing clustering can perform faster face recognition better than without pre-processing clustering.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The grouping of facial images using agglomerative hierarchical clustering to improve the CBIR based face recognition system\",\"authors\":\"M. Fachrurrozi, Clara Fin Badillah, Saparudin, Junia Erlina, Erwin, Mardiana, Auzan Lazuardi\",\"doi\":\"10.1109/ICODSE.2017.8285868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grouping of face images can be done automatically using the Agglomerative Hierarchical Clustering (AHC) algorithm. The pre-processing performed is feature extraction in getting the face image vector feature. The AHC algorithm performs grouping using linkage average, single, and complete method. Grouping face images can help improve the search speed of the CBIR based face recognition system. The cluster validation test uses the value of Cophenetic Correlation Coefficien (CCC). From the test results, it is known that the complete method has a higher CCC value than other methods, that is equal to 0.904938 with the difference value of 0.127558 on single method and the difference of 0.02291 on the average method. The face recognition system using pre-processing clustering can perform faster face recognition better than without pre-processing clustering.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

采用聚类分层聚类(AHC)算法对人脸图像进行自动分组。预处理主要是提取人脸图像的矢量特征。AHC算法使用链接平均、单一和完整的方法进行分组。对人脸图像进行分组可以提高基于CBIR的人脸识别系统的搜索速度。聚类验证检验使用Cophenetic Correlation coefficient (CCC)的值。由测试结果可知,完整方法的CCC值高于其他方法,为0.904938,单一方法的差异值为0.127558,平均方法的差异值为0.02291。采用预处理聚类的人脸识别系统比不采用预处理聚类的人脸识别速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The grouping of facial images using agglomerative hierarchical clustering to improve the CBIR based face recognition system
The grouping of face images can be done automatically using the Agglomerative Hierarchical Clustering (AHC) algorithm. The pre-processing performed is feature extraction in getting the face image vector feature. The AHC algorithm performs grouping using linkage average, single, and complete method. Grouping face images can help improve the search speed of the CBIR based face recognition system. The cluster validation test uses the value of Cophenetic Correlation Coefficien (CCC). From the test results, it is known that the complete method has a higher CCC value than other methods, that is equal to 0.904938 with the difference value of 0.127558 on single method and the difference of 0.02291 on the average method. The face recognition system using pre-processing clustering can perform faster face recognition better than without pre-processing clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid recommender system using random walk with restart for social tagging system Comparison of optimal path finding techniques for minimal diagnosis in mapping repair Cells identification of acute myeloid leukemia AML M0 and AML M1 using K-nearest neighbour based on morphological images Utility function based-mixed integer nonlinear programming (MINLP) problem model of information service pricing schemes Graph clustering using dirichlet process mixture model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1