高性能触发器亚稳态的比较分析与研究

David Li, P. Chuang, M. Sachdev
{"title":"高性能触发器亚稳态的比较分析与研究","authors":"David Li, P. Chuang, M. Sachdev","doi":"10.1109/ISQED.2010.5450482","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze and characterize the metastability of 11 previously proposed high-performance flip-flops, reduced clock-swing flip-flops, and level-converting flip-flops. From extensive simulation results in 65nm CMOS technology, the main metastability parameters of τ and T0 are extracted and analyzed at both nominal and reduced supply voltage. Our simulation results indicate that these flip-flops exhibit a wide range (up to few orders of magnitudes) of metastability windows. In particular, flip-flops with differential and positive feedback configuration such as the sense-amplifier based flip-flops demonstrate the most optimal metastability. Based on this finding, a novel pre-discharge flip-flop (PDFF) with positive feedback configuration is proposed. Extensive simulation results reveal that PDFF achieves better metastability than the previous proposed flip-flops at both nominal voltage supply and nominal voltage supply with reduced clock-swing.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Comparative analysis and study of metastability on high-performance flip-flops\",\"authors\":\"David Li, P. Chuang, M. Sachdev\",\"doi\":\"10.1109/ISQED.2010.5450482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze and characterize the metastability of 11 previously proposed high-performance flip-flops, reduced clock-swing flip-flops, and level-converting flip-flops. From extensive simulation results in 65nm CMOS technology, the main metastability parameters of τ and T0 are extracted and analyzed at both nominal and reduced supply voltage. Our simulation results indicate that these flip-flops exhibit a wide range (up to few orders of magnitudes) of metastability windows. In particular, flip-flops with differential and positive feedback configuration such as the sense-amplifier based flip-flops demonstrate the most optimal metastability. Based on this finding, a novel pre-discharge flip-flop (PDFF) with positive feedback configuration is proposed. Extensive simulation results reveal that PDFF achieves better metastability than the previous proposed flip-flops at both nominal voltage supply and nominal voltage supply with reduced clock-swing.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们分析和表征了先前提出的11种高性能触发器,减少时钟摆动触发器和电平转换触发器的亚稳态。从65nm CMOS技术的大量模拟结果中,提取并分析了标称和降低电源电压下τ和T0的主要亚稳态参数。我们的模拟结果表明,这些触发器表现出广泛的亚稳态窗口(高达几个数量级)。特别是,具有差分和正反馈配置的触发器,如基于传感器放大器的触发器,表现出最优的亚稳态。基于这一发现,提出了一种具有正反馈结构的预放电触发器(PDFF)。大量的仿真结果表明,PDFF在标称电压供电和标称电压供电下都比之前提出的触发器具有更好的亚稳态,并且时钟摆幅减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis and study of metastability on high-performance flip-flops
In this paper, we analyze and characterize the metastability of 11 previously proposed high-performance flip-flops, reduced clock-swing flip-flops, and level-converting flip-flops. From extensive simulation results in 65nm CMOS technology, the main metastability parameters of τ and T0 are extracted and analyzed at both nominal and reduced supply voltage. Our simulation results indicate that these flip-flops exhibit a wide range (up to few orders of magnitudes) of metastability windows. In particular, flip-flops with differential and positive feedback configuration such as the sense-amplifier based flip-flops demonstrate the most optimal metastability. Based on this finding, a novel pre-discharge flip-flop (PDFF) with positive feedback configuration is proposed. Extensive simulation results reveal that PDFF achieves better metastability than the previous proposed flip-flops at both nominal voltage supply and nominal voltage supply with reduced clock-swing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low power clock network placement framework Body bias driven design synthesis for optimum performance per area Adaptive task allocation for multiprocessor SoCs Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate Low power clock gates optimization for clock tree distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1