基于神经网络的状态控制器机电系统辨识与整定

A. Anisimov, M. E. Sorokovnin, S. Tararykin
{"title":"基于神经网络的状态控制器机电系统辨识与整定","authors":"A. Anisimov, M. E. Sorokovnin, S. Tararykin","doi":"10.1109/ICIEAM54945.2022.9787198","DOIUrl":null,"url":null,"abstract":"This study examines the problem of automatically identifying and tuning control systems for parametrically undefined mechatronic objects with a state regulator. An automatic tuning method is proposed, based on identifying the parameters of a controlled object vector-matrix model, using an artificial neural network, with subsequent synthesis of the controller by the modal control method. An algorithm has been developed to optimize the placement of sensors for controlled object state coordinates, using the mathematical apparatus of observability gramians, which ensures specified identification accuracy in conditions subject to noise in the measurement channels. The proposed intelligent method ensures identification of controlled object parameters and calculation of the state controller according to the results of a single experiment, thus reducing the duration of setting in real time","PeriodicalId":128083,"journal":{"name":"2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying and Tuning Mechatronic Systems with State Controllers, Using an Artificial Neural Network\",\"authors\":\"A. Anisimov, M. E. Sorokovnin, S. Tararykin\",\"doi\":\"10.1109/ICIEAM54945.2022.9787198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the problem of automatically identifying and tuning control systems for parametrically undefined mechatronic objects with a state regulator. An automatic tuning method is proposed, based on identifying the parameters of a controlled object vector-matrix model, using an artificial neural network, with subsequent synthesis of the controller by the modal control method. An algorithm has been developed to optimize the placement of sensors for controlled object state coordinates, using the mathematical apparatus of observability gramians, which ensures specified identification accuracy in conditions subject to noise in the measurement channels. The proposed intelligent method ensures identification of controlled object parameters and calculation of the state controller according to the results of a single experiment, thus reducing the duration of setting in real time\",\"PeriodicalId\":128083,\"journal\":{\"name\":\"2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEAM54945.2022.9787198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEAM54945.2022.9787198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了具有状态调节器的参数未定义机电一体化对象的自动识别和调谐控制系统的问题。在识别被控对象矢量矩阵模型参数的基础上,提出了一种基于人工神经网络的自动整定方法,随后采用模态控制方法对控制器进行综合。利用可观测性语法的数学装置,开发了一种算法来优化控制对象状态坐标的传感器位置,从而确保在测量通道中受噪声影响的条件下指定的识别精度。提出的智能方法保证了被控对象参数的识别和状态控制器的计算是根据单次实验的结果进行的,从而减少了实时整定的时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying and Tuning Mechatronic Systems with State Controllers, Using an Artificial Neural Network
This study examines the problem of automatically identifying and tuning control systems for parametrically undefined mechatronic objects with a state regulator. An automatic tuning method is proposed, based on identifying the parameters of a controlled object vector-matrix model, using an artificial neural network, with subsequent synthesis of the controller by the modal control method. An algorithm has been developed to optimize the placement of sensors for controlled object state coordinates, using the mathematical apparatus of observability gramians, which ensures specified identification accuracy in conditions subject to noise in the measurement channels. The proposed intelligent method ensures identification of controlled object parameters and calculation of the state controller according to the results of a single experiment, thus reducing the duration of setting in real time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stacker Crane Position System Development Development of Measures to Optimize the Transformers Loading Development of Systems for Transmitting Data and Energy through an Elastic Medium Study of Wire Sag and Temperature Influence of Power Lines on Reflectometry Signal Parameters Proceedings 2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1