提高占用地图遮挡查询效率

Dirk Staneker, D. Bartz, M. Meissner
{"title":"提高占用地图遮挡查询效率","authors":"Dirk Staneker, D. Bartz, M. Meissner","doi":"10.1109/PVGS.2003.1249049","DOIUrl":null,"url":null,"abstract":"Image space occlusion culling is an useful approach to reduce the rendering load of large polygonal models. Like most large model techniques, it trades overhead costs with the rendering costs of the possibly occluded geometry. Meanwhile, modern graphics hardware supports occlusion culling, whereas they associate a significant query overhead, which hurts in particular, if the occlusion culling query itself was unsuccessful. We propose the occupancy map - a compact, cache-optimized representation of coverage information - to reduce the number of costly but unsuccessful occlusion culling queries and to arrange multiple occlusion queries. The information of the occupancy map is used to skip an occlusion query, if the respective map area is not yet set $the respective area has not yet received rendered pixels -, hence an occlusion query would always return not occluded. The remaining occlusion information is efficiently determined by asynchronous multiple occlusion queries with hardware-supported query functionality. To avoid redundant results, we arrange these multiple occlusion queries according to the information of several occupancy maps. Our presented technique is conservative and benefits from a partial depth order of the geometry.","PeriodicalId":307148,"journal":{"name":"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Improving occlusion query efficiency with occupancy maps\",\"authors\":\"Dirk Staneker, D. Bartz, M. Meissner\",\"doi\":\"10.1109/PVGS.2003.1249049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image space occlusion culling is an useful approach to reduce the rendering load of large polygonal models. Like most large model techniques, it trades overhead costs with the rendering costs of the possibly occluded geometry. Meanwhile, modern graphics hardware supports occlusion culling, whereas they associate a significant query overhead, which hurts in particular, if the occlusion culling query itself was unsuccessful. We propose the occupancy map - a compact, cache-optimized representation of coverage information - to reduce the number of costly but unsuccessful occlusion culling queries and to arrange multiple occlusion queries. The information of the occupancy map is used to skip an occlusion query, if the respective map area is not yet set $the respective area has not yet received rendered pixels -, hence an occlusion query would always return not occluded. The remaining occlusion information is efficiently determined by asynchronous multiple occlusion queries with hardware-supported query functionality. To avoid redundant results, we arrange these multiple occlusion queries according to the information of several occupancy maps. Our presented technique is conservative and benefits from a partial depth order of the geometry.\",\"PeriodicalId\":307148,\"journal\":{\"name\":\"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVGS.2003.1249049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVGS.2003.1249049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

图像空间遮挡剔除是减少大型多边形模型渲染负荷的一种有效方法。像大多数大型模型技术一样,它用可能遮挡的几何图形的渲染成本来交换开销成本。与此同时,现代图形硬件支持遮挡剔除,但它们会带来显著的查询开销,特别是当遮挡剔除查询本身不成功时。我们提出了占用图——一种紧凑的、缓存优化的覆盖信息表示——来减少代价高昂但不成功的遮挡剔除查询的数量,并安排多个遮挡查询。占用地图的信息用于跳过遮挡查询,如果各自的地图区域尚未设置$各自的区域尚未接收渲染像素-,因此遮挡查询将始终返回未遮挡。剩余的遮挡信息通过具有硬件支持的查询功能的异步多遮挡查询有效地确定。为了避免结果冗余,我们根据多个占用图的信息来排列这些多个遮挡查询。我们提出的技术是保守的,并受益于几何的部分深度顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving occlusion query efficiency with occupancy maps
Image space occlusion culling is an useful approach to reduce the rendering load of large polygonal models. Like most large model techniques, it trades overhead costs with the rendering costs of the possibly occluded geometry. Meanwhile, modern graphics hardware supports occlusion culling, whereas they associate a significant query overhead, which hurts in particular, if the occlusion culling query itself was unsuccessful. We propose the occupancy map - a compact, cache-optimized representation of coverage information - to reduce the number of costly but unsuccessful occlusion culling queries and to arrange multiple occlusion queries. The information of the occupancy map is used to skip an occlusion query, if the respective map area is not yet set $the respective area has not yet received rendered pixels -, hence an occlusion query would always return not occluded. The remaining occlusion information is efficiently determined by asynchronous multiple occlusion queries with hardware-supported query functionality. To avoid redundant results, we arrange these multiple occlusion queries according to the information of several occupancy maps. Our presented technique is conservative and benefits from a partial depth order of the geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SLIC: scheduled linear image compositing for parallel volume rendering Distributed interactive ray tracing of dynamic scenes From cluster to wall with VTK The feature tree: visualizing feature tracking in distributed AMR datasets Parallel cell projection rendering of adaptive mesh refinement data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1