基于神经网络和潜在语义分析的泰语作文自动评分

Chanunya Loraksa, R. Peachavanish
{"title":"基于神经网络和潜在语义分析的泰语作文自动评分","authors":"Chanunya Loraksa, R. Peachavanish","doi":"10.1109/AMS.2007.19","DOIUrl":null,"url":null,"abstract":"In this research, a backpropagation neural network and latent semantic analysis were used to assess the quality of Thai-language essays written by high school students in the subject matter of historical royal Thai literatures. Forty essays written in response to a question were each evaluated by high school teachers and assigned a human score. In the first experiment, we used raw term frequency vectors of the essays and their corresponding human scores to train the neural network and obtain the machine scores. In the second experiment, we pre-processed the raw term frequency vectors using latent semantic analysis technique prior to feeding them to the neural network. The experimental results show that the addition of latent semantic analysis technique improves scoring performance","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Automatic Thai-Language Essay Scoring Using Neural Network and Latent Semantic Analysis\",\"authors\":\"Chanunya Loraksa, R. Peachavanish\",\"doi\":\"10.1109/AMS.2007.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a backpropagation neural network and latent semantic analysis were used to assess the quality of Thai-language essays written by high school students in the subject matter of historical royal Thai literatures. Forty essays written in response to a question were each evaluated by high school teachers and assigned a human score. In the first experiment, we used raw term frequency vectors of the essays and their corresponding human scores to train the neural network and obtain the machine scores. In the second experiment, we pre-processed the raw term frequency vectors using latent semantic analysis technique prior to feeding them to the neural network. The experimental results show that the addition of latent semantic analysis technique improves scoring performance\",\"PeriodicalId\":198751,\"journal\":{\"name\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2007.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项研究中,反向传播神经网络和潜在语义分析被用来评估高中学生写的泰国皇家历史文献主题的泰文文章的质量。针对一个问题写了40篇文章,每篇文章都由高中老师进行评估,并给出一个人类分数。在第一个实验中,我们使用文章的原始术语频率向量及其对应的人类分数来训练神经网络并获得机器分数。在第二个实验中,我们在将原始项频率向量输入神经网络之前,使用潜在语义分析技术对其进行预处理。实验结果表明,潜在语义分析技术的加入提高了评分性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Thai-Language Essay Scoring Using Neural Network and Latent Semantic Analysis
In this research, a backpropagation neural network and latent semantic analysis were used to assess the quality of Thai-language essays written by high school students in the subject matter of historical royal Thai literatures. Forty essays written in response to a question were each evaluated by high school teachers and assigned a human score. In the first experiment, we used raw term frequency vectors of the essays and their corresponding human scores to train the neural network and obtain the machine scores. In the second experiment, we pre-processed the raw term frequency vectors using latent semantic analysis technique prior to feeding them to the neural network. The experimental results show that the addition of latent semantic analysis technique improves scoring performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Protocol Steganography: Hiding Data in IP Header Energy Efficient Expanding Ring Search On Verification of Communicating Finite State Machines Using Residual Languages High-Speed Real-Time Simulation Modified Line Search Method for Global Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1