{"title":"学习卷积注意递归嵌入序列推荐","authors":"Yu-Che Tsai, Cheng-te Li","doi":"10.1145/3487351.3489478","DOIUrl":null,"url":null,"abstract":"Top-N sequential recommendation is to predict the next few items based on user's sequential interactions with past items. This paper aims at boosting the performance of top-N sequential recommendation based on a state-of-the-art model, Caser. We point out three insufficiencies of Caser - do not model variant-sized sequential patterns, treating the impact of each past time step equally, and cannot learn cumulative features. Then we propose a novel Convolutional Attentional Recurrent Embedding (CARE) learning model. Experiments conducted on a large-scale user-location check-in dataset exhibit promising performance, comparing to Caser.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"184 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CARE: learning convolutional attentional recurrent embedding for sequential recommendation\",\"authors\":\"Yu-Che Tsai, Cheng-te Li\",\"doi\":\"10.1145/3487351.3489478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top-N sequential recommendation is to predict the next few items based on user's sequential interactions with past items. This paper aims at boosting the performance of top-N sequential recommendation based on a state-of-the-art model, Caser. We point out three insufficiencies of Caser - do not model variant-sized sequential patterns, treating the impact of each past time step equally, and cannot learn cumulative features. Then we propose a novel Convolutional Attentional Recurrent Embedding (CARE) learning model. Experiments conducted on a large-scale user-location check-in dataset exhibit promising performance, comparing to Caser.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"184 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3489478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3489478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CARE: learning convolutional attentional recurrent embedding for sequential recommendation
Top-N sequential recommendation is to predict the next few items based on user's sequential interactions with past items. This paper aims at boosting the performance of top-N sequential recommendation based on a state-of-the-art model, Caser. We point out three insufficiencies of Caser - do not model variant-sized sequential patterns, treating the impact of each past time step equally, and cannot learn cumulative features. Then we propose a novel Convolutional Attentional Recurrent Embedding (CARE) learning model. Experiments conducted on a large-scale user-location check-in dataset exhibit promising performance, comparing to Caser.