在资源有限的系统中,视频编码器优化的高效视频分析

R. M. T. P. Rajakaruna, W. Fernando, J. Calic
{"title":"在资源有限的系统中,视频编码器优化的高效视频分析","authors":"R. M. T. P. Rajakaruna, W. Fernando, J. Calic","doi":"10.1109/ICIINFS.2011.6038062","DOIUrl":null,"url":null,"abstract":"Performance of real-time video processing applications such as surveillance systems, content-based search, is limited by the complexity of video content analysis in the pixel domain. A low complex alternative is to analyse the video in the compressed domain, where content features already available in the compressed video are directly used in the analysis. However, this is achieved at the expense of output precision and reliability, due to compression-efficiency driven feature selection at the encoder. Therefore, video applications could benefit from enhanced reliability of data embedded in the compressed video. In this paper, we present a scalable optimization model that addresses the accuracy of content features in parallel with the conventional rate-distortion optimization criterion. We analyse and optimize rate-distortion performance of video encoder under content description accuracy constrain, using a motion calibrated synthetic data set containing a range of scene and motion complexity levels. Finally, using a natural video data set, we demonstrate that the proposed optimization framework can be used to enhance compressed feature accuracy without incurring a rate-distortion overhead.","PeriodicalId":353966,"journal":{"name":"2011 6th International Conference on Industrial and Information Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video encoder optimization for efficient video analysis in resource-limited systems\",\"authors\":\"R. M. T. P. Rajakaruna, W. Fernando, J. Calic\",\"doi\":\"10.1109/ICIINFS.2011.6038062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of real-time video processing applications such as surveillance systems, content-based search, is limited by the complexity of video content analysis in the pixel domain. A low complex alternative is to analyse the video in the compressed domain, where content features already available in the compressed video are directly used in the analysis. However, this is achieved at the expense of output precision and reliability, due to compression-efficiency driven feature selection at the encoder. Therefore, video applications could benefit from enhanced reliability of data embedded in the compressed video. In this paper, we present a scalable optimization model that addresses the accuracy of content features in parallel with the conventional rate-distortion optimization criterion. We analyse and optimize rate-distortion performance of video encoder under content description accuracy constrain, using a motion calibrated synthetic data set containing a range of scene and motion complexity levels. Finally, using a natural video data set, we demonstrate that the proposed optimization framework can be used to enhance compressed feature accuracy without incurring a rate-distortion overhead.\",\"PeriodicalId\":353966,\"journal\":{\"name\":\"2011 6th International Conference on Industrial and Information Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2011.6038062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2011.6038062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时视频处理应用(如监控系统、基于内容的搜索)的性能受到像素域视频内容分析复杂性的限制。一种低复杂度的替代方法是在压缩域中分析视频,其中压缩视频中已有的内容特征直接用于分析。然而,这是以输出精度和可靠性为代价的,因为编码器的压缩效率驱动的特征选择。因此,视频应用可以从压缩视频中嵌入的增强的数据可靠性中受益。在本文中,我们提出了一个可扩展的优化模型,该模型与传统的率失真优化准则并行解决内容特征的准确性。我们使用包含一系列场景和运动复杂性级别的运动校准合成数据集,分析并优化了内容描述精度约束下视频编码器的率失真性能。最后,使用一个自然视频数据集,我们证明了所提出的优化框架可以用来提高压缩特征的精度,而不会产生率失真开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video encoder optimization for efficient video analysis in resource-limited systems
Performance of real-time video processing applications such as surveillance systems, content-based search, is limited by the complexity of video content analysis in the pixel domain. A low complex alternative is to analyse the video in the compressed domain, where content features already available in the compressed video are directly used in the analysis. However, this is achieved at the expense of output precision and reliability, due to compression-efficiency driven feature selection at the encoder. Therefore, video applications could benefit from enhanced reliability of data embedded in the compressed video. In this paper, we present a scalable optimization model that addresses the accuracy of content features in parallel with the conventional rate-distortion optimization criterion. We analyse and optimize rate-distortion performance of video encoder under content description accuracy constrain, using a motion calibrated synthetic data set containing a range of scene and motion complexity levels. Finally, using a natural video data set, we demonstrate that the proposed optimization framework can be used to enhance compressed feature accuracy without incurring a rate-distortion overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selective load control to provide primary frequency response in the wake of introducing new large thermal power plants to Sri Lanka A trust computing mechanism for cloud computing with multilevel thresholding Distributed beamforming techniques for dual-hop decode-and-forward MIMO relay networks Performance comparison of optical receivers using different filtering algorithms and modulation schemes A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1