在线生物识别系统的开发

Victor Oluwatobiloba Adeniji, M. Scott, Nomnga Phumzile
{"title":"在线生物识别系统的开发","authors":"Victor Oluwatobiloba Adeniji, M. Scott, Nomnga Phumzile","doi":"10.1109/ISTAFRICA.2016.7530647","DOIUrl":null,"url":null,"abstract":"This study presents an automated Online Biometric-enabled Class Attendance Register System (OBCARS) prototype. The system design and development is aimed at addressing the challenges of misplaced and/or torn attendance register paper sheets in various classrooms in Higher Educational Institutions. Also, the system is aimed at providing an efficient and effective class attendance tracking method that prevents attendance marking impersonation among students, and eases students' attendance record computation. The system adopted the use of biometric fingerprint reader for an individual student to input his/her attendance record for lectures attended in the system's back-end database. The system was tested with 50 students in the Department of Computer Science, University of Fort Hare Alice, South Africa for usability and fingerprint recognition accuracy. The test result indicated 97% accuracy at system level. The average execution time for student attendance tracking is 8.7 seconds against 22.6 seconds using paper attendance.","PeriodicalId":326074,"journal":{"name":"2016 IST-Africa Week Conference","volume":"497 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Development of an Online Biometric-enabled Class Attendance Register System\",\"authors\":\"Victor Oluwatobiloba Adeniji, M. Scott, Nomnga Phumzile\",\"doi\":\"10.1109/ISTAFRICA.2016.7530647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an automated Online Biometric-enabled Class Attendance Register System (OBCARS) prototype. The system design and development is aimed at addressing the challenges of misplaced and/or torn attendance register paper sheets in various classrooms in Higher Educational Institutions. Also, the system is aimed at providing an efficient and effective class attendance tracking method that prevents attendance marking impersonation among students, and eases students' attendance record computation. The system adopted the use of biometric fingerprint reader for an individual student to input his/her attendance record for lectures attended in the system's back-end database. The system was tested with 50 students in the Department of Computer Science, University of Fort Hare Alice, South Africa for usability and fingerprint recognition accuracy. The test result indicated 97% accuracy at system level. The average execution time for student attendance tracking is 8.7 seconds against 22.6 seconds using paper attendance.\",\"PeriodicalId\":326074,\"journal\":{\"name\":\"2016 IST-Africa Week Conference\",\"volume\":\"497 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IST-Africa Week Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTAFRICA.2016.7530647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IST-Africa Week Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTAFRICA.2016.7530647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究提出了一个自动化的在线生物识别系统(OBCARS)原型。该系统的设计和开发旨在解决高等教育机构各种教室的考勤纸错位和/或撕裂的挑战。此外,该系统旨在提供一种高效有效的班级考勤跟踪方法,防止学生之间的考勤标记,并简化学生的考勤记录计算。该系统采用生物指纹识别器,让个别学生在系统的后端数据库输入他/她的听课记录。该系统在南非爱丽丝堡大学计算机科学系的50名学生身上进行了可用性和指纹识别准确性的测试。测试结果表明,系统级准确度为97%。学生考勤跟踪的平均执行时间为8.7秒,而使用纸质考勤的平均执行时间为22.6秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an Online Biometric-enabled Class Attendance Register System
This study presents an automated Online Biometric-enabled Class Attendance Register System (OBCARS) prototype. The system design and development is aimed at addressing the challenges of misplaced and/or torn attendance register paper sheets in various classrooms in Higher Educational Institutions. Also, the system is aimed at providing an efficient and effective class attendance tracking method that prevents attendance marking impersonation among students, and eases students' attendance record computation. The system adopted the use of biometric fingerprint reader for an individual student to input his/her attendance record for lectures attended in the system's back-end database. The system was tested with 50 students in the Department of Computer Science, University of Fort Hare Alice, South Africa for usability and fingerprint recognition accuracy. The test result indicated 97% accuracy at system level. The average execution time for student attendance tracking is 8.7 seconds against 22.6 seconds using paper attendance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICT adoption and use in Zimbabwean SMEs A security algorithm for wireless sensor networks in the Internet of Things paradigm The extent to which the POPI act makes provision for patient privacy in mobile personal health record systems Prototyping Smart City applications over large scale M2M testbed Sustainable cooperative distance learning system for education in developing countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1