MULAPI:一个API方法和使用位置推荐的工具

Congying Xu, Bosen Min, Xiaobing Sun, Jiajun Hu, Bin Li, Yucong Duan
{"title":"MULAPI:一个API方法和使用位置推荐的工具","authors":"Congying Xu, Bosen Min, Xiaobing Sun, Jiajun Hu, Bin Li, Yucong Duan","doi":"10.1109/ICSE-Companion.2019.00053","DOIUrl":null,"url":null,"abstract":"Software is incrementally evolved as various new feature requests are implemented to meet users' requirements. To accelerate the incoming feature implementation, developers often utilize existing third-party APIs that encapsulate featurerelated functionality into simple APIs. However, it is non-trivial for developers to choose which APIs to use and where to use them in a target program since the search space of APIs and their usage locations are usually large. In this paper, we introduce a tool, MULAPI, to facilitate the decision of suitable APIs at potential usage locations for implementing the incoming feature requests. MULAPI combines feature localization and information retrieval techniques to accomplish API recommendation and usage location. Empirical studies demonstrate that MULAPI can effectively recommend correct APIs and their usage locations with higher precision than state-of-the-art approaches. The video of our demo is available at https://youtu.be/s3Cs5ltqdvs.","PeriodicalId":273100,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MULAPI: A Tool for API Method and Usage Location Recommendation\",\"authors\":\"Congying Xu, Bosen Min, Xiaobing Sun, Jiajun Hu, Bin Li, Yucong Duan\",\"doi\":\"10.1109/ICSE-Companion.2019.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software is incrementally evolved as various new feature requests are implemented to meet users' requirements. To accelerate the incoming feature implementation, developers often utilize existing third-party APIs that encapsulate featurerelated functionality into simple APIs. However, it is non-trivial for developers to choose which APIs to use and where to use them in a target program since the search space of APIs and their usage locations are usually large. In this paper, we introduce a tool, MULAPI, to facilitate the decision of suitable APIs at potential usage locations for implementing the incoming feature requests. MULAPI combines feature localization and information retrieval techniques to accomplish API recommendation and usage location. Empirical studies demonstrate that MULAPI can effectively recommend correct APIs and their usage locations with higher precision than state-of-the-art approaches. The video of our demo is available at https://youtu.be/s3Cs5ltqdvs.\",\"PeriodicalId\":273100,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-Companion.2019.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着实现各种新特性请求以满足用户需求,软件会逐步发展。为了加速即将到来的特性实现,开发人员经常利用现有的第三方api,这些api将特性相关的功能封装到简单的api中。然而,对于开发人员来说,在目标程序中选择使用哪些api以及在何处使用它们是非常重要的,因为api的搜索空间及其使用位置通常很大。在本文中,我们介绍了一个工具MULAPI,以方便在潜在的使用位置决定合适的api,以实现传入的功能请求。MULAPI结合了特征定位和信息检索技术来完成API推荐和使用定位。实证研究表明,MULAPI可以有效地推荐正确的api及其使用位置,并且比最先进的方法具有更高的精度。我们的演示视频可以在https://youtu.be/s3Cs5ltqdvs上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MULAPI: A Tool for API Method and Usage Location Recommendation
Software is incrementally evolved as various new feature requests are implemented to meet users' requirements. To accelerate the incoming feature implementation, developers often utilize existing third-party APIs that encapsulate featurerelated functionality into simple APIs. However, it is non-trivial for developers to choose which APIs to use and where to use them in a target program since the search space of APIs and their usage locations are usually large. In this paper, we introduce a tool, MULAPI, to facilitate the decision of suitable APIs at potential usage locations for implementing the incoming feature requests. MULAPI combines feature localization and information retrieval techniques to accomplish API recommendation and usage location. Empirical studies demonstrate that MULAPI can effectively recommend correct APIs and their usage locations with higher precision than state-of-the-art approaches. The video of our demo is available at https://youtu.be/s3Cs5ltqdvs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Deterioration of Learning-Based Malware Detectors for Android Quantifying Patterns and Programming Strategies in Block-Based Programming Environments A Data-Driven Security Game to Facilitate Information Security Education Toward Detection and Characterization of Variability Bugs in Configurable C Software: An Empirical Study Mimicking User Behavior to Improve In-House Test Suites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1