King H. Yang, F. Zhu, F. Luan, Longmao Zhao, P. Begeman
{"title":"人体颈部有限元模型的建立","authors":"King H. Yang, F. Zhu, F. Luan, Longmao Zhao, P. Begeman","doi":"10.4271/983157","DOIUrl":null,"url":null,"abstract":"A 3-dimensional finite element model of a human neck was developed to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model consisting of vertebrae C1-T1 was constructed primarily of 8-node brick elements. Vertebrae were modeled using linear elastic-plastic materials and the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. A previously developed head and brain model was also incorporated. Only the passive effects of the head and neck muscles were considered. Data from head drop tests performed at Duke University and data from 3, 24 km/hr cadaver rear-end impact sled tests were used to validate the model. The validated model was integrated into a skeleton torso model previously developed to simulate a 50th percentile male driver in a 48 km/hr impact with a pre-deployed airbag. This simulation was similar to that reported by Cheng et al. In this application, the kinematics and airbag pressure predicted by the model compared with experimental data. None of the airbags used in the simulations or experiments represent any currently in production. Further research is still needed to fully validate the model before it can be used to study neck loads during head-airbag or other serious injury interactions.","PeriodicalId":291036,"journal":{"name":"Publication of: Society of Automotive Engineers","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"DEVELOPMENT OF A FINITE ELEMENT MODEL OF THE HUMAN NECK\",\"authors\":\"King H. Yang, F. Zhu, F. Luan, Longmao Zhao, P. Begeman\",\"doi\":\"10.4271/983157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 3-dimensional finite element model of a human neck was developed to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model consisting of vertebrae C1-T1 was constructed primarily of 8-node brick elements. Vertebrae were modeled using linear elastic-plastic materials and the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. A previously developed head and brain model was also incorporated. Only the passive effects of the head and neck muscles were considered. Data from head drop tests performed at Duke University and data from 3, 24 km/hr cadaver rear-end impact sled tests were used to validate the model. The validated model was integrated into a skeleton torso model previously developed to simulate a 50th percentile male driver in a 48 km/hr impact with a pre-deployed airbag. This simulation was similar to that reported by Cheng et al. In this application, the kinematics and airbag pressure predicted by the model compared with experimental data. None of the airbags used in the simulations or experiments represent any currently in production. Further research is still needed to fully validate the model before it can be used to study neck loads during head-airbag or other serious injury interactions.\",\"PeriodicalId\":291036,\"journal\":{\"name\":\"Publication of: Society of Automotive Engineers\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publication of: Society of Automotive Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/983157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publication of: Society of Automotive Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/983157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DEVELOPMENT OF A FINITE ELEMENT MODEL OF THE HUMAN NECK
A 3-dimensional finite element model of a human neck was developed to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model consisting of vertebrae C1-T1 was constructed primarily of 8-node brick elements. Vertebrae were modeled using linear elastic-plastic materials and the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. A previously developed head and brain model was also incorporated. Only the passive effects of the head and neck muscles were considered. Data from head drop tests performed at Duke University and data from 3, 24 km/hr cadaver rear-end impact sled tests were used to validate the model. The validated model was integrated into a skeleton torso model previously developed to simulate a 50th percentile male driver in a 48 km/hr impact with a pre-deployed airbag. This simulation was similar to that reported by Cheng et al. In this application, the kinematics and airbag pressure predicted by the model compared with experimental data. None of the airbags used in the simulations or experiments represent any currently in production. Further research is still needed to fully validate the model before it can be used to study neck loads during head-airbag or other serious injury interactions.