顾客如何在超市行走和购物

K. Yada, Ken Ishibashi, Taku Ohashi, Danhua Wang, S. Tsumoto
{"title":"顾客如何在超市行走和购物","authors":"K. Yada, Ken Ishibashi, Taku Ohashi, Danhua Wang, S. Tsumoto","doi":"10.1109/ICDMW51313.2020.00025","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to classify shopping trip types based on customer path data and to identify differences in effectiveness of sales promotions. Existing studies on shopping trip types have not incorporated customer in-store behavior data as an index for classification. In this paper, we categorize customer shopping trip types into two categories of “major trip” and “fill-in trip”, and investigate the differences in the impact of sales promotions on sales effectiveness using customer path data. Impact of sales is measured by the probability of occurrence in the three processes of the purchase process, based on existing research.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Shoppers Walk and Shop in a Supermarket\",\"authors\":\"K. Yada, Ken Ishibashi, Taku Ohashi, Danhua Wang, S. Tsumoto\",\"doi\":\"10.1109/ICDMW51313.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to classify shopping trip types based on customer path data and to identify differences in effectiveness of sales promotions. Existing studies on shopping trip types have not incorporated customer in-store behavior data as an index for classification. In this paper, we categorize customer shopping trip types into two categories of “major trip” and “fill-in trip”, and investigate the differences in the impact of sales promotions on sales effectiveness using customer path data. Impact of sales is measured by the probability of occurrence in the three processes of the purchase process, based on existing research.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是根据顾客路径数据对购物旅行类型进行分类,并确定促销效果的差异。现有的关于购物旅行类型的研究并没有将顾客入店行为数据作为分类的指标。在本文中,我们将顾客的购物行程类型分为“主要行程”和“填充行程”两类,并利用顾客路径数据研究促销对销售效果影响的差异。在已有研究的基础上,通过购买过程中三个过程发生的概率来衡量销售的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Shoppers Walk and Shop in a Supermarket
The purpose of this study was to classify shopping trip types based on customer path data and to identify differences in effectiveness of sales promotions. Existing studies on shopping trip types have not incorporated customer in-store behavior data as an index for classification. In this paper, we categorize customer shopping trip types into two categories of “major trip” and “fill-in trip”, and investigate the differences in the impact of sales promotions on sales effectiveness using customer path data. Impact of sales is measured by the probability of occurrence in the three processes of the purchase process, based on existing research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1