碳纳米管研究:从学术奇迹到工业探索

S. Fan
{"title":"碳纳米管研究:从学术奇迹到工业探索","authors":"S. Fan","doi":"10.1109/IWCE.2009.5091094","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNT) are nano-scale tubular structures which consist of seamless cylindrical shells of graphitic sheets. They were first found by professor Sumio Iijima in the arcdischarge soot between graphite electrodes in 1991 [1]. As a newly discovered carbon allotrope, CNTs have drawn worldwide attentions by their unique electrical, mechanical, and thermal properties. Seven years after their discovery, CNTs were synthesized in the form of arrays by chemical vapor deposition (CVD) [2,3]. For the first time in the history, billions of CNTs were aligned in the vertical direction on a substrate, and their growth position can be controlled by catalyst pattern design [3]. In 2002, we discovered a new type of CNT array, which is named the super-aligned CNT array. This kind of array was composed of clean, straight and defectfree CNTs, and there exist strong Van de Waals forces between adjacent nanotubes. Due to this unique feature, when one picks a strand of CNTs by tweezers or adhesive tapes, continuous long yarns or films can be simply pulled out from the array [4], as shown in figure 1. This discovery had enabled us to produce macroscopic materials with pure CNTs with a quick and easy dry spin process, as shown in figure 2. In 2005, we scaled up the substrate size of the CNT arrays from 1 inch to 4 inches, which could provide CNT films as wide as 10 cm [5]. Figure 1. The mechanism of dry spinning CNT yarns and films from super-aligned CNT arrays. The CNT yarns and films are composed of sparse parallel CNTs along the pulling direction. With the large percent of the vacancy between CNTs, the as drawn films can have transparency up to 90%. Therefore, CNT films can be used as a new type of transparent conductive film which have potential applications in liquid crystal displays and touch panels. The CNT films also have superb flexibility which is desired in flexible IT products. Figure 2. a) Spinning CNT film. b) A SEM image of the CNT film. c) A CNT film shrink into a fiber when passing through a drop of ethanol. d) A SEM image of the CNT fiber.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CNT Research: from Academic Wonder to Industrial Exploration\",\"authors\":\"S. Fan\",\"doi\":\"10.1109/IWCE.2009.5091094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotubes (CNT) are nano-scale tubular structures which consist of seamless cylindrical shells of graphitic sheets. They were first found by professor Sumio Iijima in the arcdischarge soot between graphite electrodes in 1991 [1]. As a newly discovered carbon allotrope, CNTs have drawn worldwide attentions by their unique electrical, mechanical, and thermal properties. Seven years after their discovery, CNTs were synthesized in the form of arrays by chemical vapor deposition (CVD) [2,3]. For the first time in the history, billions of CNTs were aligned in the vertical direction on a substrate, and their growth position can be controlled by catalyst pattern design [3]. In 2002, we discovered a new type of CNT array, which is named the super-aligned CNT array. This kind of array was composed of clean, straight and defectfree CNTs, and there exist strong Van de Waals forces between adjacent nanotubes. Due to this unique feature, when one picks a strand of CNTs by tweezers or adhesive tapes, continuous long yarns or films can be simply pulled out from the array [4], as shown in figure 1. This discovery had enabled us to produce macroscopic materials with pure CNTs with a quick and easy dry spin process, as shown in figure 2. In 2005, we scaled up the substrate size of the CNT arrays from 1 inch to 4 inches, which could provide CNT films as wide as 10 cm [5]. Figure 1. The mechanism of dry spinning CNT yarns and films from super-aligned CNT arrays. The CNT yarns and films are composed of sparse parallel CNTs along the pulling direction. With the large percent of the vacancy between CNTs, the as drawn films can have transparency up to 90%. Therefore, CNT films can be used as a new type of transparent conductive film which have potential applications in liquid crystal displays and touch panels. The CNT films also have superb flexibility which is desired in flexible IT products. Figure 2. a) Spinning CNT film. b) A SEM image of the CNT film. c) A CNT film shrink into a fiber when passing through a drop of ethanol. d) A SEM image of the CNT fiber.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

碳纳米管(CNT)是由石墨片的无缝圆柱壳组成的纳米级管状结构。它们最早是由饭岛住夫教授于1991年在石墨电极之间的电弧放电烟尘中发现的。碳纳米管作为一种新发现的碳同素异形体,因其独特的电学、力学和热性能而受到广泛关注。在碳纳米管被发现7年后,人们通过化学气相沉积(CVD)技术以阵列形式合成了碳纳米管[2,3]。有史以来第一次,数十亿个碳纳米管在衬底上沿垂直方向排列,并且它们的生长位置可以通过催化剂图案设计[3]来控制。2002年,我们发现了一种新型的碳纳米管阵列,它被命名为超对准碳纳米管阵列。这种阵列由干净、直、无缺陷的碳纳米管组成,相邻的碳纳米管之间存在很强的范德华力。由于这一独特的特性,当用镊子或胶带夹起一束碳纳米管时,可以简单地从阵列[4]中拔出连续的长纱线或薄膜,如图1所示。这一发现使我们能够通过快速简便的干旋工艺制备纯碳纳米管宏观材料,如图2所示。2005年,我们将碳纳米管阵列的衬底尺寸从1英寸扩大到4英寸,这可以提供宽达10厘米的碳纳米管薄膜。图1所示。干纺碳纳米管纱线和超排列碳纳米管阵列薄膜的机理。碳纳米管纱线和薄膜由沿拉伸方向稀疏平行的碳纳米管组成。由于碳纳米管之间的空隙率很大,因此绘制的薄膜的透明度可达90%。因此,碳纳米管薄膜可以作为一种新型的透明导电薄膜,在液晶显示和触摸面板中具有潜在的应用前景。碳纳米管薄膜也有极好的灵活性,这是在灵活的IT产品所需要的。图2。a)旋转碳纳米管薄膜。b)碳纳米管薄膜的SEM图像。c)碳纳米管薄膜在通过一滴乙醇时收缩成纤维。d)碳纳米管纤维的SEM图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNT Research: from Academic Wonder to Industrial Exploration
Carbon nanotubes (CNT) are nano-scale tubular structures which consist of seamless cylindrical shells of graphitic sheets. They were first found by professor Sumio Iijima in the arcdischarge soot between graphite electrodes in 1991 [1]. As a newly discovered carbon allotrope, CNTs have drawn worldwide attentions by their unique electrical, mechanical, and thermal properties. Seven years after their discovery, CNTs were synthesized in the form of arrays by chemical vapor deposition (CVD) [2,3]. For the first time in the history, billions of CNTs were aligned in the vertical direction on a substrate, and their growth position can be controlled by catalyst pattern design [3]. In 2002, we discovered a new type of CNT array, which is named the super-aligned CNT array. This kind of array was composed of clean, straight and defectfree CNTs, and there exist strong Van de Waals forces between adjacent nanotubes. Due to this unique feature, when one picks a strand of CNTs by tweezers or adhesive tapes, continuous long yarns or films can be simply pulled out from the array [4], as shown in figure 1. This discovery had enabled us to produce macroscopic materials with pure CNTs with a quick and easy dry spin process, as shown in figure 2. In 2005, we scaled up the substrate size of the CNT arrays from 1 inch to 4 inches, which could provide CNT films as wide as 10 cm [5]. Figure 1. The mechanism of dry spinning CNT yarns and films from super-aligned CNT arrays. The CNT yarns and films are composed of sparse parallel CNTs along the pulling direction. With the large percent of the vacancy between CNTs, the as drawn films can have transparency up to 90%. Therefore, CNT films can be used as a new type of transparent conductive film which have potential applications in liquid crystal displays and touch panels. The CNT films also have superb flexibility which is desired in flexible IT products. Figure 2. a) Spinning CNT film. b) A SEM image of the CNT film. c) A CNT film shrink into a fiber when passing through a drop of ethanol. d) A SEM image of the CNT fiber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation Effects in Silicon Nanowire MOSFETs Charge-based Mobility Modeling for Organic Semiconductors Wigner Monte Carlo Simulation of CNTFET: Comparison Between Semi-Classical and Quantum Transport Semiconductor Technology-Trends, Challenges and Opportunities Computation of Complex Band Structures in Bulk and Confined Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1