基于过完备字典矩阵和1-范数最小化的电能质量扰动检测

P. Kathirvel, M. Manikandan, P. Maya, K. P. Soman
{"title":"基于过完备字典矩阵和1-范数最小化的电能质量扰动检测","authors":"P. Kathirvel, M. Manikandan, P. Maya, K. P. Soman","doi":"10.1109/ICPES.2011.6156684","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new automatic transient detection and localization for analysis of power quality disturbances. The proposed method is based on an over-complete dictionary (OCD) matrix and an ℓ1-norm minimization algorithm. The OCD matrix is constructed using the spike-like (or identity) bases and discrete-cosine bases. The proposed method is validated using the four types of transient events and the results are compared with wavelet-based method. Experiment results show that the proposed method provides accurate time-information of impulsive and oscillatory transients under high levels of noise, and also preserves signature of transient events.","PeriodicalId":158903,"journal":{"name":"2011 International Conference on Power and Energy Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Detection of power quality disturbances with overcomplete dictionary matrix and ℓ1-norm minimization\",\"authors\":\"P. Kathirvel, M. Manikandan, P. Maya, K. P. Soman\",\"doi\":\"10.1109/ICPES.2011.6156684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new automatic transient detection and localization for analysis of power quality disturbances. The proposed method is based on an over-complete dictionary (OCD) matrix and an ℓ1-norm minimization algorithm. The OCD matrix is constructed using the spike-like (or identity) bases and discrete-cosine bases. The proposed method is validated using the four types of transient events and the results are compared with wavelet-based method. Experiment results show that the proposed method provides accurate time-information of impulsive and oscillatory transients under high levels of noise, and also preserves signature of transient events.\",\"PeriodicalId\":158903,\"journal\":{\"name\":\"2011 International Conference on Power and Energy Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPES.2011.6156684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPES.2011.6156684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的用于电能质量扰动分析的自动暂态检测与定位方法。该方法基于过完备字典矩阵和1-范数最小化算法。OCD矩阵是使用尖状(或单位)基和离散余弦基构造的。利用四种瞬态事件对该方法进行了验证,并与基于小波的方法进行了比较。实验结果表明,该方法在高噪声条件下能提供准确的脉冲和振荡瞬态时间信息,并保留了瞬态事件的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of power quality disturbances with overcomplete dictionary matrix and ℓ1-norm minimization
In this paper, we present a new automatic transient detection and localization for analysis of power quality disturbances. The proposed method is based on an over-complete dictionary (OCD) matrix and an ℓ1-norm minimization algorithm. The OCD matrix is constructed using the spike-like (or identity) bases and discrete-cosine bases. The proposed method is validated using the four types of transient events and the results are compared with wavelet-based method. Experiment results show that the proposed method provides accurate time-information of impulsive and oscillatory transients under high levels of noise, and also preserves signature of transient events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the optimal tuning of FACTS based stabilizers for dynamic stability enhancement in multimachine power systems A new proposal for voltage regulation multi feeders/Multibus systems using MC-DVR Deployment of System Protection Schemes for enhancing reliability of power system: Operational experience of wide area SPS in Northern Regional Power System in India Power quality improvement in DTC based induction motor drive using Minnesota rectifier Neural learning algorithm based power quality enhancement for three phase three wire distribution system utilizing shunt active power filter strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1