基于广义直方图阈值分割的CT三维肺分割

Marcelo A. F. Toledo, M. Rebelo, J. Krieger, M. A. Gutierrez
{"title":"基于广义直方图阈值分割的CT三维肺分割","authors":"Marcelo A. F. Toledo, M. Rebelo, J. Krieger, M. A. Gutierrez","doi":"10.5753/sbcas.2021.16054","DOIUrl":null,"url":null,"abstract":"Computerized Tomography is very important for lung disease diagnostics, including computer assisted methods. Lung segmentation is usually a first step in further sophisticated methods of diagnosis. If in one hand, deep learning methods have state-of-the-art performance, they aren't as simple to apply compared to classical methods, sometimes requiring extra data and training. We designed a method specific for lung segmentation based on histogram thresholding. We observed that, in our proposed method, by changing from Otsu to the more recently developed GHT we got a significant improvement in segmentation, jumping from 77% to 91% average dice (from 90% to 95% median dice, respectively), approaching deep learning methods (UNet) results (94% average and 97% median dice). Even though our proposed method runs on CPU, it's still 2.6 times faster than UNet on GPU. Moreover, our proposed method is off-the-shelf, requiring no training or parameter calibration, being suitable as pre-processing for more sophisticated methods that aim specific diagnoses.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-the-shelf 3D Lung Segmentation in CT using Generalized Histogram Thresholding\",\"authors\":\"Marcelo A. F. Toledo, M. Rebelo, J. Krieger, M. A. Gutierrez\",\"doi\":\"10.5753/sbcas.2021.16054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computerized Tomography is very important for lung disease diagnostics, including computer assisted methods. Lung segmentation is usually a first step in further sophisticated methods of diagnosis. If in one hand, deep learning methods have state-of-the-art performance, they aren't as simple to apply compared to classical methods, sometimes requiring extra data and training. We designed a method specific for lung segmentation based on histogram thresholding. We observed that, in our proposed method, by changing from Otsu to the more recently developed GHT we got a significant improvement in segmentation, jumping from 77% to 91% average dice (from 90% to 95% median dice, respectively), approaching deep learning methods (UNet) results (94% average and 97% median dice). Even though our proposed method runs on CPU, it's still 2.6 times faster than UNet on GPU. Moreover, our proposed method is off-the-shelf, requiring no training or parameter calibration, being suitable as pre-processing for more sophisticated methods that aim specific diagnoses.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机断层扫描对肺部疾病的诊断非常重要,包括计算机辅助方法。肺分割通常是进一步复杂诊断方法的第一步。一方面,深度学习方法具有最先进的性能,但与经典方法相比,它们的应用并不那么简单,有时需要额外的数据和训练。我们设计了一种基于直方图阈值的肺分割方法。我们观察到,在我们提出的方法中,通过将Otsu改为最近开发的GHT,我们在分割方面得到了显着改善,平均骰子从77%跃升至91%(分别从90%跃升至95%中位数骰子),接近深度学习方法(UNet)的结果(94%平均骰子和97%中位数骰子)。即使我们提出的方法在CPU上运行,它仍然比GPU上的UNet快2.6倍。此外,我们提出的方法是现成的,不需要训练或参数校准,适用于针对特定诊断的更复杂方法的预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Off-the-shelf 3D Lung Segmentation in CT using Generalized Histogram Thresholding
Computerized Tomography is very important for lung disease diagnostics, including computer assisted methods. Lung segmentation is usually a first step in further sophisticated methods of diagnosis. If in one hand, deep learning methods have state-of-the-art performance, they aren't as simple to apply compared to classical methods, sometimes requiring extra data and training. We designed a method specific for lung segmentation based on histogram thresholding. We observed that, in our proposed method, by changing from Otsu to the more recently developed GHT we got a significant improvement in segmentation, jumping from 77% to 91% average dice (from 90% to 95% median dice, respectively), approaching deep learning methods (UNet) results (94% average and 97% median dice). Even though our proposed method runs on CPU, it's still 2.6 times faster than UNet on GPU. Moreover, our proposed method is off-the-shelf, requiring no training or parameter calibration, being suitable as pre-processing for more sophisticated methods that aim specific diagnoses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uma Avaliação de Arquiteturas de Aprendizado Profundo para a Classificação de Úlceras do Pé Diabético CitoFocus: Uma Plataforma para Colaboração e Aprendizado em Citopatologia Detecção de Nódulos da Tireoide em Exames de Termografia utilizando Redes Neurais Convolucionais em Cascata Veículo Autônomo Guiado para Entrega de Máscaras de Proteção no Ambiente Industrial Jogos Digitais e Engajamento na Reabilitação de Pacientes: Uma Revisão Sistemática da Literatura
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1