基于集中式人工智能的频谱决策多通道软件无线电

Vlad Fernoaga, R. Curpen, Cosmin Nutiu, F. Sandu
{"title":"基于集中式人工智能的频谱决策多通道软件无线电","authors":"Vlad Fernoaga, R. Curpen, Cosmin Nutiu, F. Sandu","doi":"10.1109/ROEDUNET.2019.8909454","DOIUrl":null,"url":null,"abstract":"The present paper aims to bring Artificial Intelligence (AI) in Software Defined Radio (SDR). A multichannel spectrum sensing problem, extended to a long-term spectral occupancy observation, enabled the authors to derive a “vertical” per-channel machine learning model that was tested in an integrated National Instruments (NI) environment – Ettus/NI USRP (Universal Software Radio Peripherals) service-driven, top-down, by LabVIEW. The proof-of-concept was based on a simple 8 channels PMR (Private Mobile Radio) use-case.","PeriodicalId":309683,"journal":{"name":"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"48 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multichannel Software Defined Radio with Spectral Decision via Centralized Artificial Intelligence\",\"authors\":\"Vlad Fernoaga, R. Curpen, Cosmin Nutiu, F. Sandu\",\"doi\":\"10.1109/ROEDUNET.2019.8909454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper aims to bring Artificial Intelligence (AI) in Software Defined Radio (SDR). A multichannel spectrum sensing problem, extended to a long-term spectral occupancy observation, enabled the authors to derive a “vertical” per-channel machine learning model that was tested in an integrated National Instruments (NI) environment – Ettus/NI USRP (Universal Software Radio Peripherals) service-driven, top-down, by LabVIEW. The proof-of-concept was based on a simple 8 channels PMR (Private Mobile Radio) use-case.\",\"PeriodicalId\":309683,\"journal\":{\"name\":\"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"volume\":\"48 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROEDUNET.2019.8909454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROEDUNET.2019.8909454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在将人工智能(AI)引入软件定义无线电(SDR)。多通道频谱感知问题,扩展到长期频谱占用观察,使作者能够推导出一个“垂直”的每通道机器学习模型,该模型在集成的国家仪器(NI)环境中进行了测试- Ettus/NI USRP(通用软件无线电外设)服务驱动,自上而下,由LabVIEW。概念验证是基于一个简单的8通道PMR(专用移动无线电)用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multichannel Software Defined Radio with Spectral Decision via Centralized Artificial Intelligence
The present paper aims to bring Artificial Intelligence (AI) in Software Defined Radio (SDR). A multichannel spectrum sensing problem, extended to a long-term spectral occupancy observation, enabled the authors to derive a “vertical” per-channel machine learning model that was tested in an integrated National Instruments (NI) environment – Ettus/NI USRP (Universal Software Radio Peripherals) service-driven, top-down, by LabVIEW. The proof-of-concept was based on a simple 8 channels PMR (Private Mobile Radio) use-case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adding Custom Sandbox Profiles to iOS Apps Double Standard Method for Designing Adaptive Backup Systems Performance analysis in private and public Cloud infrastructures Open-LTE Call Emulator in Software Defined Radio The Relational Parts of Speech in Text Analysis for Definition Detection, for Romanian Language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1