基于模型驱动的OTFS系统OAMP检测算法

Chao Ding, S. Li, Xufan Zhang, Qijiang Yuan, Lixia Xiao
{"title":"基于模型驱动的OTFS系统OAMP检测算法","authors":"Chao Ding, S. Li, Xufan Zhang, Qijiang Yuan, Lixia Xiao","doi":"10.1109/ICCCWorkshops55477.2022.9896698","DOIUrl":null,"url":null,"abstract":"Orthogonal time frequency space (OTFS) modu-lation is a new waveform modulation technique which is able to resist the Doppler shift in high-mobility scenario by con-verting a fast time-varying channel in the time-frequency (TF) domain into a time-invariant channel in the delay-Doppler (DD) domain. However, the dimension of the equivalent channel matrix of the OTFS system is usually large, resulting in an excellent challenge for OTFS signal detection. This paper proposes a model-driven intelligent detection method. It first modifies the original orthogonal approximate message passing (OAMP) by constructing several trainable parameters. Then, the model-driven deep learning technology is utilized to train these parameters to improve the convergence and detection accuracy of the method. The experiment results show that the proposed method has better BER performances than some traditional state-of-the-art algorithms.","PeriodicalId":148869,"journal":{"name":"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model-driven OAMP Detection Algorithm for OTFS Systems\",\"authors\":\"Chao Ding, S. Li, Xufan Zhang, Qijiang Yuan, Lixia Xiao\",\"doi\":\"10.1109/ICCCWorkshops55477.2022.9896698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal time frequency space (OTFS) modu-lation is a new waveform modulation technique which is able to resist the Doppler shift in high-mobility scenario by con-verting a fast time-varying channel in the time-frequency (TF) domain into a time-invariant channel in the delay-Doppler (DD) domain. However, the dimension of the equivalent channel matrix of the OTFS system is usually large, resulting in an excellent challenge for OTFS signal detection. This paper proposes a model-driven intelligent detection method. It first modifies the original orthogonal approximate message passing (OAMP) by constructing several trainable parameters. Then, the model-driven deep learning technology is utilized to train these parameters to improve the convergence and detection accuracy of the method. The experiment results show that the proposed method has better BER performances than some traditional state-of-the-art algorithms.\",\"PeriodicalId\":148869,\"journal\":{\"name\":\"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops55477.2022.9896698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops55477.2022.9896698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正交时频空间(OTFS)调制是一种新的波形调制技术,它将时频域的快速时变信道转换为延迟多普勒域的时不变信道,从而能够抵抗高迁移率场景下的多普勒频移。然而,OTFS系统的等效信道矩阵维数通常较大,这给OTFS信号检测带来了极大的挑战。本文提出了一种模型驱动的智能检测方法。它首先通过构造几个可训练的参数来改进原有的正交近似消息传递(OAMP)。然后,利用模型驱动的深度学习技术对这些参数进行训练,提高方法的收敛性和检测精度。实验结果表明,该方法比一些传统的先进算法具有更好的误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Model-driven OAMP Detection Algorithm for OTFS Systems
Orthogonal time frequency space (OTFS) modu-lation is a new waveform modulation technique which is able to resist the Doppler shift in high-mobility scenario by con-verting a fast time-varying channel in the time-frequency (TF) domain into a time-invariant channel in the delay-Doppler (DD) domain. However, the dimension of the equivalent channel matrix of the OTFS system is usually large, resulting in an excellent challenge for OTFS signal detection. This paper proposes a model-driven intelligent detection method. It first modifies the original orthogonal approximate message passing (OAMP) by constructing several trainable parameters. Then, the model-driven deep learning technology is utilized to train these parameters to improve the convergence and detection accuracy of the method. The experiment results show that the proposed method has better BER performances than some traditional state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Importance-Assisted Multi-User Scheduling in MIMO Edge Learning Systems Artificial Intelligence Service by Satellite Networks based on Ensemble Learning with Cloud-Edge-End Integration CRS interference handling on NR and LTE overlapping spectrum: Analysis on performance and standard impact Energy Harvesting-Based UAV-Assisted Vehicular Edge Computing: A Deep Reinforcement Learning Approach How Can Reconfigurable Intelligent Surfaces Drive 5G-Advanced Wireless Networks: A Standardization Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1