{"title":"伴生气处理后MEA再生解吸器的设计。第2部分","authors":"S. Golovastov, D. Alexandrova","doi":"10.24108/0619.0001499","DOIUrl":null,"url":null,"abstract":"The paper presents a desorption-based method for treating a waste mono-ethanolamine (MEA) solution to extract hydrogen sulfide. The process is used in the associated petroleum gas (APG) treatment unit to remove hydrogen sulphide together with the MEA solution process of hydrogen sulfide absorption from the APG that comes from the well. Extracted hydrogen sulfide can be used to obtain elemental sulfur. The object of development is a stripper for APG treating to remove hydrogen sulfide.Such a treating system is, as a rule, unavailable separately from the absorber and represents an integrated system to treat APG from hydrogen sulfide. Thus, the work objective was to determine parameters, and develop and design desorption column where mono-ethanolamine purification from hydrogen sulphide occurs.The paper presents calculation of desorption column that allows us to close the treatment process, thereby ensuring the regeneration of the mono-ethanolamine solution through treatment by the desorption process. The waste amine is returned to the gas treatment process, and the extracted hydrogen sulfide goes to the Claus process for elemental sulphur production. The column calculation was performed taking into account chemical and thermal processes. The APG treatment unit option to extract hydrogen sulfide with further elemental sulfur produced through the Claus process has been obtained to solve this problem by using the APG as an industrial and domestic gas.","PeriodicalId":166201,"journal":{"name":"Mechanical Engineering and Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Desorber for MEA Regeneration after Associated Petroleum Gas Treatment. Part 2\",\"authors\":\"S. Golovastov, D. Alexandrova\",\"doi\":\"10.24108/0619.0001499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a desorption-based method for treating a waste mono-ethanolamine (MEA) solution to extract hydrogen sulfide. The process is used in the associated petroleum gas (APG) treatment unit to remove hydrogen sulphide together with the MEA solution process of hydrogen sulfide absorption from the APG that comes from the well. Extracted hydrogen sulfide can be used to obtain elemental sulfur. The object of development is a stripper for APG treating to remove hydrogen sulfide.Such a treating system is, as a rule, unavailable separately from the absorber and represents an integrated system to treat APG from hydrogen sulfide. Thus, the work objective was to determine parameters, and develop and design desorption column where mono-ethanolamine purification from hydrogen sulphide occurs.The paper presents calculation of desorption column that allows us to close the treatment process, thereby ensuring the regeneration of the mono-ethanolamine solution through treatment by the desorption process. The waste amine is returned to the gas treatment process, and the extracted hydrogen sulfide goes to the Claus process for elemental sulphur production. The column calculation was performed taking into account chemical and thermal processes. The APG treatment unit option to extract hydrogen sulfide with further elemental sulfur produced through the Claus process has been obtained to solve this problem by using the APG as an industrial and domestic gas.\",\"PeriodicalId\":166201,\"journal\":{\"name\":\"Mechanical Engineering and Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24108/0619.0001499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24108/0619.0001499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing Desorber for MEA Regeneration after Associated Petroleum Gas Treatment. Part 2
The paper presents a desorption-based method for treating a waste mono-ethanolamine (MEA) solution to extract hydrogen sulfide. The process is used in the associated petroleum gas (APG) treatment unit to remove hydrogen sulphide together with the MEA solution process of hydrogen sulfide absorption from the APG that comes from the well. Extracted hydrogen sulfide can be used to obtain elemental sulfur. The object of development is a stripper for APG treating to remove hydrogen sulfide.Such a treating system is, as a rule, unavailable separately from the absorber and represents an integrated system to treat APG from hydrogen sulfide. Thus, the work objective was to determine parameters, and develop and design desorption column where mono-ethanolamine purification from hydrogen sulphide occurs.The paper presents calculation of desorption column that allows us to close the treatment process, thereby ensuring the regeneration of the mono-ethanolamine solution through treatment by the desorption process. The waste amine is returned to the gas treatment process, and the extracted hydrogen sulfide goes to the Claus process for elemental sulphur production. The column calculation was performed taking into account chemical and thermal processes. The APG treatment unit option to extract hydrogen sulfide with further elemental sulfur produced through the Claus process has been obtained to solve this problem by using the APG as an industrial and domestic gas.