利用概率两两比较矩阵改进软件大小估计

J. Hihn, K. Lum
{"title":"利用概率两两比较矩阵改进软件大小估计","authors":"J. Hihn, K. Lum","doi":"10.1109/METRIC.2004.1357898","DOIUrl":null,"url":null,"abstract":"The pairwise comparison technique is a general purpose estimation approach for capturing expert judgment. This approach can be generalized to a probabilistic version using Monte Carlo methods to produce estimates of size distributions. The probabilistic pairwise comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as reference modules. In addition to describing the methodology, the results of the case study are also included. This paper is an extension of the work presented in [Lum, K et al., (2003)] and shows how the original software size estimates compared to the actual delivery size. It also describes the techniques used to modify the approach based on lessons learned. The results because they are based on only one case do not validate the effectiveness of the proposed approach but are suggestive that the technique can be effective and support the conclusion that further research is worth pursuing.","PeriodicalId":261807,"journal":{"name":"10th International Symposium on Software Metrics, 2004. Proceedings.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improving software size estimates by using probabilistic pairwise comparison matrices\",\"authors\":\"J. Hihn, K. Lum\",\"doi\":\"10.1109/METRIC.2004.1357898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pairwise comparison technique is a general purpose estimation approach for capturing expert judgment. This approach can be generalized to a probabilistic version using Monte Carlo methods to produce estimates of size distributions. The probabilistic pairwise comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as reference modules. In addition to describing the methodology, the results of the case study are also included. This paper is an extension of the work presented in [Lum, K et al., (2003)] and shows how the original software size estimates compared to the actual delivery size. It also describes the techniques used to modify the approach based on lessons learned. The results because they are based on only one case do not validate the effectiveness of the proposed approach but are suggestive that the technique can be effective and support the conclusion that further research is worth pursuing.\",\"PeriodicalId\":261807,\"journal\":{\"name\":\"10th International Symposium on Software Metrics, 2004. Proceedings.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Symposium on Software Metrics, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METRIC.2004.1357898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Symposium on Software Metrics, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METRIC.2004.1357898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

两两比较技术是一种用于获取专家判断的通用估计方法。这种方法可以推广到使用蒙特卡罗方法的概率版本,以产生大小分布的估计。概率两两比较技术使估计者能够系统地结合估计不确定性以及使用多个历史类比作为参考模块而产生的任何不确定性。除了描述方法外,还包括案例研究的结果。本文是在[Lum, K等人,(2003)]中提出的工作的扩展,并展示了如何将原始软件大小与实际交付大小进行比较。它还描述了根据经验教训修改方法所使用的技术。由于这些结果仅基于一个案例,因此不能验证所提出方法的有效性,但暗示该技术可能是有效的,并支持值得进一步研究的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving software size estimates by using probabilistic pairwise comparison matrices
The pairwise comparison technique is a general purpose estimation approach for capturing expert judgment. This approach can be generalized to a probabilistic version using Monte Carlo methods to produce estimates of size distributions. The probabilistic pairwise comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as reference modules. In addition to describing the methodology, the results of the case study are also included. This paper is an extension of the work presented in [Lum, K et al., (2003)] and shows how the original software size estimates compared to the actual delivery size. It also describes the techniques used to modify the approach based on lessons learned. The results because they are based on only one case do not validate the effectiveness of the proposed approach but are suggestive that the technique can be effective and support the conclusion that further research is worth pursuing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The necessity of assuring quality in software measurement data Resource estimation for Web applications A survey on software estimation in the Norwegian industry A controlled experiment for evaluating a metric-based reading technique for requirements inspection Assessing usability through perceptions of information scent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1