面向耳鸣研究的自动化智能移动众测

Muntazir Mehdi, Denis Schwager, R. Pryss, W. Schlee, M. Reichert, F. Hauck
{"title":"面向耳鸣研究的自动化智能移动众测","authors":"Muntazir Mehdi, Denis Schwager, R. Pryss, W. Schlee, M. Reichert, F. Hauck","doi":"10.1109/CBMS.2019.00026","DOIUrl":null,"url":null,"abstract":"Tinnitus is a disorder that is not entirely understood, and many of its correlations are still unknown. On the other hand, smartphones became ubiquitous. Their modern versions provide high computational capabilities, reasonable battery size, and a bunch of embedded high-quality sensors, combined with an accepted user interface and an application ecosystem. For tinnitus, as for many other health problems, there are a number of apps trying to help patients, therapists, and researchers to get insights into personal characteristics but also into scientific correlations as such. In this paper, we present the first approach to an app in this context, called TinnituSense that does automatic sensing of related characteristics and enables correlations to the current condition of the patient by a combined participatory sensing, e.g., a questionnaire. For tinnitus, there is a strong hypothesis that weather conditions have some influence. Our proof-of-concept implementation records weather-related sensor data and correlates them to the standard Tinnitus Handicap Inventory (THI) questionnaire. Thus, TinnituSense enables therapists and researchers to collect evidence for unknown facts, as this is the first opportunity to correlate weather to patient conditions on a larger scale. Our concept as such is limited neither to tinnitus nor to built-in sensors, e.g., in the tinnitus domain, we are experimenting with mobile EEG sensors. TinnituSense is faced with several challenges of which we already solved principle architecture, sensor management, and energy consumption.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Towards Automated Smart Mobile Crowdsensing for Tinnitus Research\",\"authors\":\"Muntazir Mehdi, Denis Schwager, R. Pryss, W. Schlee, M. Reichert, F. Hauck\",\"doi\":\"10.1109/CBMS.2019.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tinnitus is a disorder that is not entirely understood, and many of its correlations are still unknown. On the other hand, smartphones became ubiquitous. Their modern versions provide high computational capabilities, reasonable battery size, and a bunch of embedded high-quality sensors, combined with an accepted user interface and an application ecosystem. For tinnitus, as for many other health problems, there are a number of apps trying to help patients, therapists, and researchers to get insights into personal characteristics but also into scientific correlations as such. In this paper, we present the first approach to an app in this context, called TinnituSense that does automatic sensing of related characteristics and enables correlations to the current condition of the patient by a combined participatory sensing, e.g., a questionnaire. For tinnitus, there is a strong hypothesis that weather conditions have some influence. Our proof-of-concept implementation records weather-related sensor data and correlates them to the standard Tinnitus Handicap Inventory (THI) questionnaire. Thus, TinnituSense enables therapists and researchers to collect evidence for unknown facts, as this is the first opportunity to correlate weather to patient conditions on a larger scale. Our concept as such is limited neither to tinnitus nor to built-in sensors, e.g., in the tinnitus domain, we are experimenting with mobile EEG sensors. TinnituSense is faced with several challenges of which we already solved principle architecture, sensor management, and energy consumption.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

耳鸣是一种尚未完全了解的疾病,其许多相关性仍然未知。另一方面,智能手机变得无处不在。它们的现代版本提供了高计算能力、合理的电池尺寸和一堆嵌入式高质量传感器,并结合了公认的用户界面和应用生态系统。对于耳鸣,就像许多其他健康问题一样,有许多应用程序试图帮助患者、治疗师和研究人员了解个人特征,同时也了解科学相关性。在本文中,我们提出了在此背景下的第一种应用方法,称为TinnituSense,它可以自动感知相关特征,并通过联合参与式感知(例如问卷调查)实现与患者当前状况的相关性。对于耳鸣,有一个强有力的假设,天气条件有一些影响。我们的概念验证实现记录了与天气相关的传感器数据,并将其与标准耳鸣障碍清单(THI)问卷相关联。因此,TinnituSense使治疗师和研究人员能够收集未知事实的证据,因为这是第一次有机会在更大范围内将天气与患者状况联系起来。我们的概念既不局限于耳鸣也不局限于内置传感器,例如,在耳鸣领域,我们正在试验移动脑电图传感器。TinnituSense面临着几个挑战,我们已经解决了原理架构,传感器管理和能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Automated Smart Mobile Crowdsensing for Tinnitus Research
Tinnitus is a disorder that is not entirely understood, and many of its correlations are still unknown. On the other hand, smartphones became ubiquitous. Their modern versions provide high computational capabilities, reasonable battery size, and a bunch of embedded high-quality sensors, combined with an accepted user interface and an application ecosystem. For tinnitus, as for many other health problems, there are a number of apps trying to help patients, therapists, and researchers to get insights into personal characteristics but also into scientific correlations as such. In this paper, we present the first approach to an app in this context, called TinnituSense that does automatic sensing of related characteristics and enables correlations to the current condition of the patient by a combined participatory sensing, e.g., a questionnaire. For tinnitus, there is a strong hypothesis that weather conditions have some influence. Our proof-of-concept implementation records weather-related sensor data and correlates them to the standard Tinnitus Handicap Inventory (THI) questionnaire. Thus, TinnituSense enables therapists and researchers to collect evidence for unknown facts, as this is the first opportunity to correlate weather to patient conditions on a larger scale. Our concept as such is limited neither to tinnitus nor to built-in sensors, e.g., in the tinnitus domain, we are experimenting with mobile EEG sensors. TinnituSense is faced with several challenges of which we already solved principle architecture, sensor management, and energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1