基于RBF神经网络的AOD炉铁液终点温度预测模型

H. Ma, W. You, Tao Chen
{"title":"基于RBF神经网络的AOD炉铁液终点温度预测模型","authors":"H. Ma, W. You, Tao Chen","doi":"10.1109/ICLSIM.2010.5461165","DOIUrl":null,"url":null,"abstract":"According to Jilin Ferroalloy Factory 10-ton AOD furnace actual smelting condition, analyzes the impact factor of AOD furnace molten iron endpoint temperature, by optimizing the neural network connection weights and structure, design prediction model of molten iron endpoint temperature based on RBF neural network, using LM algorithm and 50 furnaces actual production data to train the model, and predicts another 50 furnaces molten iron temperature, Result shows that prediction model of molten iron endpoint temperature based on RBF neural network has a high accuracy, when the error of endpoint temperature is ± 12 °C, hit rate of temperature is 82.4%.","PeriodicalId":249102,"journal":{"name":"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction model of molten iron endpoint temperature in AOD furnace based on RBF neural network\",\"authors\":\"H. Ma, W. You, Tao Chen\",\"doi\":\"10.1109/ICLSIM.2010.5461165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Jilin Ferroalloy Factory 10-ton AOD furnace actual smelting condition, analyzes the impact factor of AOD furnace molten iron endpoint temperature, by optimizing the neural network connection weights and structure, design prediction model of molten iron endpoint temperature based on RBF neural network, using LM algorithm and 50 furnaces actual production data to train the model, and predicts another 50 furnaces molten iron temperature, Result shows that prediction model of molten iron endpoint temperature based on RBF neural network has a high accuracy, when the error of endpoint temperature is ± 12 °C, hit rate of temperature is 82.4%.\",\"PeriodicalId\":249102,\"journal\":{\"name\":\"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICLSIM.2010.5461165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLSIM.2010.5461165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

根据吉林铁合金厂10吨AOD炉实际冶炼情况,分析影响AOD炉铁液终点温度的因素,通过优化神经网络连接权值和结构,设计基于RBF神经网络的铁液终点温度预测模型,利用LM算法和50台炉实际生产数据对模型进行训练,并预测另外50台炉的铁液温度。结果表明,基于RBF神经网络的铁水终点温度预测模型具有较高的精度,当终点温度误差为±12℃时,温度预测准确率为82.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction model of molten iron endpoint temperature in AOD furnace based on RBF neural network
According to Jilin Ferroalloy Factory 10-ton AOD furnace actual smelting condition, analyzes the impact factor of AOD furnace molten iron endpoint temperature, by optimizing the neural network connection weights and structure, design prediction model of molten iron endpoint temperature based on RBF neural network, using LM algorithm and 50 furnaces actual production data to train the model, and predicts another 50 furnaces molten iron temperature, Result shows that prediction model of molten iron endpoint temperature based on RBF neural network has a high accuracy, when the error of endpoint temperature is ± 12 °C, hit rate of temperature is 82.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and design of incentive mechanism for managers The analysis on the role of the government in the creative industries cluster development based on the industrial cluster mechanism of the outside source The design and implementation of the Integrated Supply Chain Management System based on UML and J2EE technology Location selection of recycle center by combining AHP and DEA methodologies Identification of critical control points of the food cold chain logistic process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1