{"title":"预赛","authors":"Andreas Bolfing","doi":"10.1093/oso/9780198862840.003.0002","DOIUrl":null,"url":null,"abstract":"Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.","PeriodicalId":202275,"journal":{"name":"Cryptographic Primitives in Blockchain Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminaries\",\"authors\":\"Andreas Bolfing\",\"doi\":\"10.1093/oso/9780198862840.003.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.\",\"PeriodicalId\":202275,\"journal\":{\"name\":\"Cryptographic Primitives in Blockchain Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptographic Primitives in Blockchain Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198862840.003.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptographic Primitives in Blockchain Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198862840.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.