复杂偏微分方程的极端尺度隐式求解器:地幔中的高度非均质流动

J. Rudi, A. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. Staar, Y. Ineichen, C. Bekas, A. Curioni, O. Ghattas
{"title":"复杂偏微分方程的极端尺度隐式求解器:地幔中的高度非均质流动","authors":"J. Rudi, A. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. Staar, Y. Ineichen, C. Bekas, A. Curioni, O. Ghattas","doi":"10.1145/2807591.2807675","DOIUrl":null,"url":null,"abstract":"Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle\",\"authors\":\"J. Rudi, A. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. Staar, Y. Ineichen, C. Bekas, A. Curioni, O. Ghattas\",\"doi\":\"10.1145/2807591.2807675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs.\",\"PeriodicalId\":117494,\"journal\":{\"name\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807591.2807675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

摘要

地幔对流是地球内部的基本物理过程,负责地球的热和地质演化,包括板块构造。地幔被建模为一种粘性的、不可压缩的、非牛顿流体。大范围的空间尺度、材料性质的极端变异性和各向异性以及严重的非线性流变,使得用现实参数模拟全球地幔对流变得难以实现。在这里,我们提出了一种新的隐式求解器,它具有最佳的算法性能,并且能够极端缩放硬PDE问题,例如地幔对流。为了最大限度地提高精度和缩短运行时间,该求解器采用了许多先进技术,包括积极的多八叉树自适应、混合连续-不连续离散化、任意高阶精度、混合光谱/几何/代数多重网格以及新颖的Schur-complement预处理。这些特性对极端的可伸缩性提出了巨大的挑战。我们证明,与传统观点相反,算法最优隐式求解器可以设计为150万核,用于严重非线性、病态、异构和各向异性的偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle
Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal scheduling of in-situ analysis for large-scale scientific simulations Monetary cost optimizations for MPI-based HPC applications on Amazon clouds: checkpoints and replicated execution IOrchestra: supporting high-performance data-intensive applications in the cloud via collaborative virtualization An input-adaptive and in-place approach to dense tensor-times-matrix multiply Scalable sparse tensor decompositions in distributed memory systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1