一种新的基于语义的图像检索方法

A. Lakdashti, M. Moin, K. Badie
{"title":"一种新的基于语义的图像检索方法","authors":"A. Lakdashti, M. Moin, K. Badie","doi":"10.1109/ICACT.2008.4493928","DOIUrl":null,"url":null,"abstract":"In this paper, we design a fuzzy system for image retrieval to reduce the semantic gap in the content-based image retrieval systems. Our main contribution is three-fold: (1) designing a fuzzy modeling approach to model the expert human behavior in the image retrieval task, (2) a fuzzy system for semantic-based image retrieval, and (3) a training algorithm for creating the fuzzy rules. The proposed solution not only is a novel idea in the semantic-based image retrieval field, but has enough potential in learning semantics from the user and making a powerful approach to improve the performance of CBIR systems, as our experiments on a set of 2000 images supports our claim.","PeriodicalId":448615,"journal":{"name":"2008 10th International Conference on Advanced Communication Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Novel Semantic-Based Image Retrieval Method\",\"authors\":\"A. Lakdashti, M. Moin, K. Badie\",\"doi\":\"10.1109/ICACT.2008.4493928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we design a fuzzy system for image retrieval to reduce the semantic gap in the content-based image retrieval systems. Our main contribution is three-fold: (1) designing a fuzzy modeling approach to model the expert human behavior in the image retrieval task, (2) a fuzzy system for semantic-based image retrieval, and (3) a training algorithm for creating the fuzzy rules. The proposed solution not only is a novel idea in the semantic-based image retrieval field, but has enough potential in learning semantics from the user and making a powerful approach to improve the performance of CBIR systems, as our experiments on a set of 2000 images supports our claim.\",\"PeriodicalId\":448615,\"journal\":{\"name\":\"2008 10th International Conference on Advanced Communication Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 10th International Conference on Advanced Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACT.2008.4493928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 10th International Conference on Advanced Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2008.4493928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文设计了一个模糊图像检索系统,以减少基于内容的图像检索系统中的语义缺口。我们的主要贡献有三个方面:(1)设计了一种模糊建模方法来模拟图像检索任务中的专家行为,(2)一个基于语义的图像检索模糊系统,(3)一个用于创建模糊规则的训练算法。所提出的解决方案不仅在基于语义的图像检索领域是一个新颖的想法,而且在从用户那里学习语义方面具有足够的潜力,并为提高CBIR系统的性能提供了强有力的方法,因为我们在2000张图像上的实验支持了我们的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Semantic-Based Image Retrieval Method
In this paper, we design a fuzzy system for image retrieval to reduce the semantic gap in the content-based image retrieval systems. Our main contribution is three-fold: (1) designing a fuzzy modeling approach to model the expert human behavior in the image retrieval task, (2) a fuzzy system for semantic-based image retrieval, and (3) a training algorithm for creating the fuzzy rules. The proposed solution not only is a novel idea in the semantic-based image retrieval field, but has enough potential in learning semantics from the user and making a powerful approach to improve the performance of CBIR systems, as our experiments on a set of 2000 images supports our claim.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Considerations of multi network in Cognitive network Just-on-Time Data Leakage Protection for Mobile Devices Improving Inter-Sector Handover User Throughput by Using Partial Reuse and Softer Handover in 3GPP LTE Downlink A New Waveband Switching Routing Algorithm in WDM Optical Networks User Mobility Mechanism for Seamless Multimedia Service in Home Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1