在网络监控系统中使用被动跟踪应用程序流量

M. Zangrilli, B. Lowekamp
{"title":"在网络监控系统中使用被动跟踪应用程序流量","authors":"M. Zangrilli, B. Lowekamp","doi":"10.1109/HPDC.2004.38","DOIUrl":null,"url":null,"abstract":"Adaptive grid applications require up-to-date network resource measurements and predictions to help steer their adaptation to meet performance goals. To this end, we are interested in monitoring the available bandwidth of the underlying networks in the most accurate and least obtrusive way. Bandwidth is either measured by actively injecting data probes into the network or by passively monitoring existing traffic, but there is a definite trade-off between the active approach, which is invasive, and the passive approach, which is rendered ineffective during periods of network idleness. We are developing the Wren bandwidth monitoring tool, which uses packet traces of existing application traffic to measure available bandwidth. We demonstrate that the principles supporting active bandwidth tools can be applied to passive traces of the LAN and WAN traffic generated by high-performance grid applications. We use our results to form a preliminary characterization of the application traffic required by available bandwidth techniques to produce effective measurements. Our results indicate that a low overhead, passive monitoring system supplemented with active measurements can be built to obtain a complete picture of the network's performance.","PeriodicalId":446429,"journal":{"name":"Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Using passive traces of application traffic in a network monitoring system\",\"authors\":\"M. Zangrilli, B. Lowekamp\",\"doi\":\"10.1109/HPDC.2004.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive grid applications require up-to-date network resource measurements and predictions to help steer their adaptation to meet performance goals. To this end, we are interested in monitoring the available bandwidth of the underlying networks in the most accurate and least obtrusive way. Bandwidth is either measured by actively injecting data probes into the network or by passively monitoring existing traffic, but there is a definite trade-off between the active approach, which is invasive, and the passive approach, which is rendered ineffective during periods of network idleness. We are developing the Wren bandwidth monitoring tool, which uses packet traces of existing application traffic to measure available bandwidth. We demonstrate that the principles supporting active bandwidth tools can be applied to passive traces of the LAN and WAN traffic generated by high-performance grid applications. We use our results to form a preliminary characterization of the application traffic required by available bandwidth techniques to produce effective measurements. Our results indicate that a low overhead, passive monitoring system supplemented with active measurements can be built to obtain a complete picture of the network's performance.\",\"PeriodicalId\":446429,\"journal\":{\"name\":\"Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPDC.2004.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.2004.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

自适应网格应用程序需要最新的网络资源测量和预测,以帮助引导其适应以满足性能目标。为此,我们感兴趣的是以最准确和最不突兀的方式监控底层网络的可用带宽。带宽要么通过主动地向网络注入数据探测来测量,要么通过被动地监视现有流量来测量,但是在主动方法(具有侵入性)和被动方法(在网络空闲期间无效)之间存在明确的权衡。我们正在开发Wren带宽监控工具,它使用现有应用程序流量的数据包跟踪来测量可用带宽。我们证明了支持主动带宽工具的原理可以应用于高性能网格应用程序生成的LAN和WAN流量的被动跟踪。我们使用我们的结果来形成可用带宽技术所需的应用程序流量的初步特征,以产生有效的测量。我们的研究结果表明,可以建立一个低开销的被动监测系统,辅以主动测量,以获得网络性能的完整图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using passive traces of application traffic in a network monitoring system
Adaptive grid applications require up-to-date network resource measurements and predictions to help steer their adaptation to meet performance goals. To this end, we are interested in monitoring the available bandwidth of the underlying networks in the most accurate and least obtrusive way. Bandwidth is either measured by actively injecting data probes into the network or by passively monitoring existing traffic, but there is a definite trade-off between the active approach, which is invasive, and the passive approach, which is rendered ineffective during periods of network idleness. We are developing the Wren bandwidth monitoring tool, which uses packet traces of existing application traffic to measure available bandwidth. We demonstrate that the principles supporting active bandwidth tools can be applied to passive traces of the LAN and WAN traffic generated by high-performance grid applications. We use our results to form a preliminary characterization of the application traffic required by available bandwidth techniques to produce effective measurements. Our results indicate that a low overhead, passive monitoring system supplemented with active measurements can be built to obtain a complete picture of the network's performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring and understanding user comfort with resource borrowing Globus and PlanetLab resource management solutions compared FPN: a distributed hash table for commercial applications GAIS: grid advanced information service based on P2P mechanism Utilization of a local grid of Mac OS X-based computers using Xgrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1