{"title":"中非喀麦隆阿达马瓦高原ngaound<s:2>北部橄榄岩主体玄武岩熔岩的岩石学研究","authors":"Njankouo Ndassa Zénab Nouraan, Nkouandou Oumarou Faarouk, Bardintzeff Jacques-Marie, Ganwa Alexandre Alembert, Fagny Mefire Aminatou, T. Arnaud","doi":"10.14419/ijag.v7i2.28941","DOIUrl":null,"url":null,"abstract":"Small volcanoes and flows of Cainozoic basaltic lavas, containing numerous mantle peridotite xenoliths, outcrop at northern Ngaoundéré in Adamawa plateau. They are composed of arena of decimeter to meter in size of bowls and blocs of dark matrix, showing crystals of olivine, clinopyroxene and oxides. All lavas present microlitic porphyritic texture with euhedral to subhedral crystals of the same phases drowned in the matrix of the same minerals plus plagioclase microlites.Microprobe analyses show that olivine phenocrysts are relatively Fo-rich (80.9-84.3 %) compared to microphenocrysts and microcrysts (Fo71.1-75.9 %). Olivine xenocrysts are highly magnesian (83.9-89.8 %). Clinopyroxene are diopside and augite. Oxides crystals are Ti-magnetite and plagioclase are labradorite and bytownite.ICP-AES and ICP-MS whole rocks analyses show that the host peridotite basaltic lavas of northern Ngaoundéré are undersaturated basanites of typical alkaline lava series. They seem not contaminated by crustal materials. They are the results of low partial melting rate of the garnet mantle source located at more than 80 km depth. The eruptions of northern Ngaoundéré lavas have been facilitated by Pan African cracks and they have sampled the subcontinental lithospheric mantle as xenoliths at different pressures and depths on their way to the surface. ","PeriodicalId":424421,"journal":{"name":"International Journal of Advanced Geosciences","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Petrology of peridotite host basaltic lavas of northern Ngaoundéré (Adamawa plateau, Cameroon, Central Africa)\",\"authors\":\"Njankouo Ndassa Zénab Nouraan, Nkouandou Oumarou Faarouk, Bardintzeff Jacques-Marie, Ganwa Alexandre Alembert, Fagny Mefire Aminatou, T. Arnaud\",\"doi\":\"10.14419/ijag.v7i2.28941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small volcanoes and flows of Cainozoic basaltic lavas, containing numerous mantle peridotite xenoliths, outcrop at northern Ngaoundéré in Adamawa plateau. They are composed of arena of decimeter to meter in size of bowls and blocs of dark matrix, showing crystals of olivine, clinopyroxene and oxides. All lavas present microlitic porphyritic texture with euhedral to subhedral crystals of the same phases drowned in the matrix of the same minerals plus plagioclase microlites.Microprobe analyses show that olivine phenocrysts are relatively Fo-rich (80.9-84.3 %) compared to microphenocrysts and microcrysts (Fo71.1-75.9 %). Olivine xenocrysts are highly magnesian (83.9-89.8 %). Clinopyroxene are diopside and augite. Oxides crystals are Ti-magnetite and plagioclase are labradorite and bytownite.ICP-AES and ICP-MS whole rocks analyses show that the host peridotite basaltic lavas of northern Ngaoundéré are undersaturated basanites of typical alkaline lava series. They seem not contaminated by crustal materials. They are the results of low partial melting rate of the garnet mantle source located at more than 80 km depth. The eruptions of northern Ngaoundéré lavas have been facilitated by Pan African cracks and they have sampled the subcontinental lithospheric mantle as xenoliths at different pressures and depths on their way to the surface. \",\"PeriodicalId\":424421,\"journal\":{\"name\":\"International Journal of Advanced Geosciences\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijag.v7i2.28941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijag.v7i2.28941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Petrology of peridotite host basaltic lavas of northern Ngaoundéré (Adamawa plateau, Cameroon, Central Africa)
Small volcanoes and flows of Cainozoic basaltic lavas, containing numerous mantle peridotite xenoliths, outcrop at northern Ngaoundéré in Adamawa plateau. They are composed of arena of decimeter to meter in size of bowls and blocs of dark matrix, showing crystals of olivine, clinopyroxene and oxides. All lavas present microlitic porphyritic texture with euhedral to subhedral crystals of the same phases drowned in the matrix of the same minerals plus plagioclase microlites.Microprobe analyses show that olivine phenocrysts are relatively Fo-rich (80.9-84.3 %) compared to microphenocrysts and microcrysts (Fo71.1-75.9 %). Olivine xenocrysts are highly magnesian (83.9-89.8 %). Clinopyroxene are diopside and augite. Oxides crystals are Ti-magnetite and plagioclase are labradorite and bytownite.ICP-AES and ICP-MS whole rocks analyses show that the host peridotite basaltic lavas of northern Ngaoundéré are undersaturated basanites of typical alkaline lava series. They seem not contaminated by crustal materials. They are the results of low partial melting rate of the garnet mantle source located at more than 80 km depth. The eruptions of northern Ngaoundéré lavas have been facilitated by Pan African cracks and they have sampled the subcontinental lithospheric mantle as xenoliths at different pressures and depths on their way to the surface.