基于肌电图的异常步态检测与识别

Yao Guo, Raffaele Gravina, Xiao Gu, G. Fortino, Guang-Zhong Yang
{"title":"基于肌电图的异常步态检测与识别","authors":"Yao Guo, Raffaele Gravina, Xiao Gu, G. Fortino, Guang-Zhong Yang","doi":"10.1109/ICHMS49158.2020.9209449","DOIUrl":null,"url":null,"abstract":"The early detection of gait abnormalities plays a key role in medical applications, where most of the previous abnormal gait recognition methods rely on kinematic data captured with vision-based systems or wearable inertial sensors. This paper, conversely, puts forward the ambitious objective to employ multiple wearable Electromyography (EMG) sensors for gait abnormalities detection. Our proposed approach uses eight wireless EMG sensors attached with skin electrodes on four muscles (i.e., Tibialis Anterior, Peroneus Longus, Gas-trocnemius, and Rectus Femoris) per each leg to measure the muscle response during walking activity. In the recognition stage, both meta-features with SVM and Bidirectional Long Short-Term Machine (BiLSTM) are exploited for gait abnormalities recognition from raw EMG data, Discrete Wavelet Transform (DWT) coefficients, and the reconstructed EMG signals, respectively. Experimental results on our gait dataset demonstrate the efficacy of EMG-based abnormal gait detection and recognition.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"EMG-based Abnormal Gait Detection and Recognition\",\"authors\":\"Yao Guo, Raffaele Gravina, Xiao Gu, G. Fortino, Guang-Zhong Yang\",\"doi\":\"10.1109/ICHMS49158.2020.9209449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early detection of gait abnormalities plays a key role in medical applications, where most of the previous abnormal gait recognition methods rely on kinematic data captured with vision-based systems or wearable inertial sensors. This paper, conversely, puts forward the ambitious objective to employ multiple wearable Electromyography (EMG) sensors for gait abnormalities detection. Our proposed approach uses eight wireless EMG sensors attached with skin electrodes on four muscles (i.e., Tibialis Anterior, Peroneus Longus, Gas-trocnemius, and Rectus Femoris) per each leg to measure the muscle response during walking activity. In the recognition stage, both meta-features with SVM and Bidirectional Long Short-Term Machine (BiLSTM) are exploited for gait abnormalities recognition from raw EMG data, Discrete Wavelet Transform (DWT) coefficients, and the reconstructed EMG signals, respectively. Experimental results on our gait dataset demonstrate the efficacy of EMG-based abnormal gait detection and recognition.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

步态异常的早期检测在医疗应用中起着关键作用,其中大多数先前的异常步态识别方法依赖于基于视觉系统或可穿戴惯性传感器捕获的运动学数据。相反,本文提出了一个雄心勃勃的目标,即使用多个可穿戴式肌电(EMG)传感器来检测步态异常。我们提出的方法是在每条腿的四块肌肉(即胫骨前肌、腓骨长肌、气股肌和股直肌)上安装八个无线肌电图传感器,并连接皮肤电极,以测量行走活动时的肌肉反应。在识别阶段,分别利用支持向量机元特征和双向长短期机元特征对原始肌电信号、离散小波变换(DWT)系数和重构肌电信号进行步态异常识别。在步态数据集上的实验结果证明了基于肌电图的异常步态检测和识别的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMG-based Abnormal Gait Detection and Recognition
The early detection of gait abnormalities plays a key role in medical applications, where most of the previous abnormal gait recognition methods rely on kinematic data captured with vision-based systems or wearable inertial sensors. This paper, conversely, puts forward the ambitious objective to employ multiple wearable Electromyography (EMG) sensors for gait abnormalities detection. Our proposed approach uses eight wireless EMG sensors attached with skin electrodes on four muscles (i.e., Tibialis Anterior, Peroneus Longus, Gas-trocnemius, and Rectus Femoris) per each leg to measure the muscle response during walking activity. In the recognition stage, both meta-features with SVM and Bidirectional Long Short-Term Machine (BiLSTM) are exploited for gait abnormalities recognition from raw EMG data, Discrete Wavelet Transform (DWT) coefficients, and the reconstructed EMG signals, respectively. Experimental results on our gait dataset demonstrate the efficacy of EMG-based abnormal gait detection and recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Time Sliding Mode Control of Connected Vehicle Platoons Guaranteeing String Stability User detection of threats with different security measures Driver Hazard Response When Processing On-road and In-vehicle Messaging of Non-Safety-Related Information Towards trustworthiness and transparency in social human-robot interaction Collaborative Environmental Monitoring through Teams of Trusted IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1