基于多尺度融合卷积神经网络的单幅图像超分辨率

Xiaofeng Du, Yifan He, Jianmin Li, Xiaozhu Xie
{"title":"基于多尺度融合卷积神经网络的单幅图像超分辨率","authors":"Xiaofeng Du, Yifan He, Jianmin Li, Xiaozhu Xie","doi":"10.1109/ICAWST.2017.8256517","DOIUrl":null,"url":null,"abstract":"An important practical issue in building Convolutional Neural Network (CNN) is a trade-off between the number of parameters and the performance. This paper proposes multiscale fusion convolutional neural network for single image superresolution. The network has the following two advantages: 1) the multi-scale convolutional layer provides the multi-context for image reconstruction; and 2) the fusion of cross-channel features reduces the dimensionality of the output of the intermediate layer. Thus the experimental results on image super-resolution demonstrate that our network achieves better performance over the state-of-art approaches.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single image super-resolution via multi-scale fusion convolutional neural network\",\"authors\":\"Xiaofeng Du, Yifan He, Jianmin Li, Xiaozhu Xie\",\"doi\":\"10.1109/ICAWST.2017.8256517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important practical issue in building Convolutional Neural Network (CNN) is a trade-off between the number of parameters and the performance. This paper proposes multiscale fusion convolutional neural network for single image superresolution. The network has the following two advantages: 1) the multi-scale convolutional layer provides the multi-context for image reconstruction; and 2) the fusion of cross-channel features reduces the dimensionality of the output of the intermediate layer. Thus the experimental results on image super-resolution demonstrate that our network achieves better performance over the state-of-art approaches.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在构建卷积神经网络(CNN)时,一个重要的实际问题是在参数数量和性能之间进行权衡。针对单幅图像的超分辨率问题,提出了一种多尺度融合卷积神经网络。该网络具有以下两个优点:1)多尺度卷积层为图像重建提供了多上下文;2)跨通道特征的融合降低了中间层输出的维数。因此,图像超分辨率的实验结果表明,我们的网络比目前的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single image super-resolution via multi-scale fusion convolutional neural network
An important practical issue in building Convolutional Neural Network (CNN) is a trade-off between the number of parameters and the performance. This paper proposes multiscale fusion convolutional neural network for single image superresolution. The network has the following two advantages: 1) the multi-scale convolutional layer provides the multi-context for image reconstruction; and 2) the fusion of cross-channel features reduces the dimensionality of the output of the intermediate layer. Thus the experimental results on image super-resolution demonstrate that our network achieves better performance over the state-of-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1