A. Vincenzi, A. Sridhar, M. Ruggiero, David Atienza Alonso
{"title":"基于神经网络和gpu的2D/3D集成电路快速热模拟","authors":"A. Vincenzi, A. Sridhar, M. Ruggiero, David Atienza Alonso","doi":"10.1109/ISLPED.2011.5993628","DOIUrl":null,"url":null,"abstract":"Heat removal is one of the major challenges faced in developing the new generation of high density integrated circuits. Future design technologies strongly depend on the availability of efficient means for thermal modeling and analysis. These thermal models must be also accurate and provide the most efficient level of abstraction enabling fast execution. We propose an innovative thermal simulation method based on Neural Networks that is able to solve the scalability problem of transient heat flow simulation in large 2D/3D multi-processor ICs by exploiting the computational power of massively parallel graphics processing units (GPUs).","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Fast thermal simulation of 2D/3D integrated circuits exploiting neural networks and GPUs\",\"authors\":\"A. Vincenzi, A. Sridhar, M. Ruggiero, David Atienza Alonso\",\"doi\":\"10.1109/ISLPED.2011.5993628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat removal is one of the major challenges faced in developing the new generation of high density integrated circuits. Future design technologies strongly depend on the availability of efficient means for thermal modeling and analysis. These thermal models must be also accurate and provide the most efficient level of abstraction enabling fast execution. We propose an innovative thermal simulation method based on Neural Networks that is able to solve the scalability problem of transient heat flow simulation in large 2D/3D multi-processor ICs by exploiting the computational power of massively parallel graphics processing units (GPUs).\",\"PeriodicalId\":117694,\"journal\":{\"name\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2011.5993628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast thermal simulation of 2D/3D integrated circuits exploiting neural networks and GPUs
Heat removal is one of the major challenges faced in developing the new generation of high density integrated circuits. Future design technologies strongly depend on the availability of efficient means for thermal modeling and analysis. These thermal models must be also accurate and provide the most efficient level of abstraction enabling fast execution. We propose an innovative thermal simulation method based on Neural Networks that is able to solve the scalability problem of transient heat flow simulation in large 2D/3D multi-processor ICs by exploiting the computational power of massively parallel graphics processing units (GPUs).