{"title":"混合CSIT下双用户MISO广播信道的保密自由度","authors":"Zhao Wang, Ming Xiao, M. Skoglund, H. Poor","doi":"10.1109/ITW.2015.7133129","DOIUrl":null,"url":null,"abstract":"The secrecy degrees of freedom (SDOF) of the multiple-input single-output (MISO) broadcast channel with confidential messages (BCC) is studied. The network consists of a two-antenna transmitter and two single-antenna receivers, each demanding a confidential message from the transmitter. The problem is investigated with mixed channel state information at transmitter (CSIT), which is a combination of perfect delayed CSIT and inaccurate current CSIT. When the variance of the estimation error for the current CSIT scales with O(P-α), with α ∈ [0, 1], it is shown that the optimal sum SDOF of the considered BCC is 1+α. Furthermore, the optimal SDOF region of the considered MISO BCC is shown to be a polygon scaling with α. The proposed scheme is based on an artificial noise alignment that can combine the benefits of both types of delayed and current CSIT. These results can be seen as an extension of results of Yang et al. and Gou-Jafar to multiuser networks with secrecy constraints.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Secrecy degrees of freedom of the two-user MISO broadcast channel with mixed CSIT\",\"authors\":\"Zhao Wang, Ming Xiao, M. Skoglund, H. Poor\",\"doi\":\"10.1109/ITW.2015.7133129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The secrecy degrees of freedom (SDOF) of the multiple-input single-output (MISO) broadcast channel with confidential messages (BCC) is studied. The network consists of a two-antenna transmitter and two single-antenna receivers, each demanding a confidential message from the transmitter. The problem is investigated with mixed channel state information at transmitter (CSIT), which is a combination of perfect delayed CSIT and inaccurate current CSIT. When the variance of the estimation error for the current CSIT scales with O(P-α), with α ∈ [0, 1], it is shown that the optimal sum SDOF of the considered BCC is 1+α. Furthermore, the optimal SDOF region of the considered MISO BCC is shown to be a polygon scaling with α. The proposed scheme is based on an artificial noise alignment that can combine the benefits of both types of delayed and current CSIT. These results can be seen as an extension of results of Yang et al. and Gou-Jafar to multiuser networks with secrecy constraints.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secrecy degrees of freedom of the two-user MISO broadcast channel with mixed CSIT
The secrecy degrees of freedom (SDOF) of the multiple-input single-output (MISO) broadcast channel with confidential messages (BCC) is studied. The network consists of a two-antenna transmitter and two single-antenna receivers, each demanding a confidential message from the transmitter. The problem is investigated with mixed channel state information at transmitter (CSIT), which is a combination of perfect delayed CSIT and inaccurate current CSIT. When the variance of the estimation error for the current CSIT scales with O(P-α), with α ∈ [0, 1], it is shown that the optimal sum SDOF of the considered BCC is 1+α. Furthermore, the optimal SDOF region of the considered MISO BCC is shown to be a polygon scaling with α. The proposed scheme is based on an artificial noise alignment that can combine the benefits of both types of delayed and current CSIT. These results can be seen as an extension of results of Yang et al. and Gou-Jafar to multiuser networks with secrecy constraints.