比较测量的驾驶员行为分布与使用SUMO和雷达真实车辆轨迹的汽车跟随模型的结果

Max Schrader, Mahdi Al Abdraboh, J. Bittle
{"title":"比较测量的驾驶员行为分布与使用SUMO和雷达真实车辆轨迹的汽车跟随模型的结果","authors":"Max Schrader, Mahdi Al Abdraboh, J. Bittle","doi":"10.52825/scp.v4i.214","DOIUrl":null,"url":null,"abstract":"In this study, the physical principles governing car-following (CF) behavior and their impact on traffic flow at signalized intersections are investigated. High temporal-resolution radar data is used to provide valuable insights into actual CF behavior, including acceleration, deceleration, and time headway distribution. Demand-calibrated SUMO simulations are run using empirical CF parameter distributions, and three CF models are evaluated: IDM, EIDM, and Krauss. By emulating radar data in SUMO and processing simulated vehicle traces, discrepancies between empirical and simulated parameter distributions are identified. Further analysis includes comparisons with default SUMO CF model parameters. The findings reveal that measured accelerations differ from CF model parameter accelerations and using the empirical value ($\\mu = 0.89m/s^2$) leads to unrealistic simulations that fail volume-based calibration. Default parameters for all three models reasonably approximate the mean and median of measured parameters, but fail to capture the true distribution shape, partly due to homogeneity when using default parameters. The results show that it is more effective to simulate with the default parameters provided by SUMO rather than using measurements of real-world distributions without additional calibration. Future work will investigate closing the loop between the measured real-world and SUMO distributions using traditional calibration tactics, as well as assess the impact of calibrated vs. default CF parameters on simulation outputs like fuel consumption.","PeriodicalId":439794,"journal":{"name":"SUMO Conference Proceedings","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Measured Driver Behavior Distributions to Results from Car-Following Models using SUMO and Real-World Vehicle Trajectories from Radar\",\"authors\":\"Max Schrader, Mahdi Al Abdraboh, J. Bittle\",\"doi\":\"10.52825/scp.v4i.214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the physical principles governing car-following (CF) behavior and their impact on traffic flow at signalized intersections are investigated. High temporal-resolution radar data is used to provide valuable insights into actual CF behavior, including acceleration, deceleration, and time headway distribution. Demand-calibrated SUMO simulations are run using empirical CF parameter distributions, and three CF models are evaluated: IDM, EIDM, and Krauss. By emulating radar data in SUMO and processing simulated vehicle traces, discrepancies between empirical and simulated parameter distributions are identified. Further analysis includes comparisons with default SUMO CF model parameters. The findings reveal that measured accelerations differ from CF model parameter accelerations and using the empirical value ($\\\\mu = 0.89m/s^2$) leads to unrealistic simulations that fail volume-based calibration. Default parameters for all three models reasonably approximate the mean and median of measured parameters, but fail to capture the true distribution shape, partly due to homogeneity when using default parameters. The results show that it is more effective to simulate with the default parameters provided by SUMO rather than using measurements of real-world distributions without additional calibration. Future work will investigate closing the loop between the measured real-world and SUMO distributions using traditional calibration tactics, as well as assess the impact of calibrated vs. default CF parameters on simulation outputs like fuel consumption.\",\"PeriodicalId\":439794,\"journal\":{\"name\":\"SUMO Conference Proceedings\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUMO Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/scp.v4i.214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUMO Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/scp.v4i.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了信号交叉口车辆跟随行为的物理规律及其对交通流的影响。高时间分辨率雷达数据用于提供对实际CF行为的有价值的见解,包括加速、减速和车头时距分布。使用经验CF参数分布运行需求校准的相扑模拟,并评估了三种CF模型:IDM, EIDM和Krauss。通过模拟相扑雷达数据,并对模拟车辆轨迹进行处理,找出了经验参数分布与模拟参数分布之间的差异。进一步的分析包括与默认SUMO CF模型参数的比较。研究结果表明,测量到的加速度与CF模型参数加速度不同,使用经验值($\mu = 0.89m/s^2$)导致不现实的模拟,无法通过基于体积的校准。所有三个模型的默认参数都合理地近似于测量参数的平均值和中位数,但未能捕捉到真实的分布形状,部分原因是使用默认参数时的同质性。结果表明,使用SUMO提供的默认参数进行模拟比使用没有额外校准的真实分布测量更有效。未来的工作将研究使用传统校准策略在测量的真实世界和SUMO分布之间闭合环路,以及评估校准与默认CF参数对模拟输出(如油耗)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing Measured Driver Behavior Distributions to Results from Car-Following Models using SUMO and Real-World Vehicle Trajectories from Radar
In this study, the physical principles governing car-following (CF) behavior and their impact on traffic flow at signalized intersections are investigated. High temporal-resolution radar data is used to provide valuable insights into actual CF behavior, including acceleration, deceleration, and time headway distribution. Demand-calibrated SUMO simulations are run using empirical CF parameter distributions, and three CF models are evaluated: IDM, EIDM, and Krauss. By emulating radar data in SUMO and processing simulated vehicle traces, discrepancies between empirical and simulated parameter distributions are identified. Further analysis includes comparisons with default SUMO CF model parameters. The findings reveal that measured accelerations differ from CF model parameter accelerations and using the empirical value ($\mu = 0.89m/s^2$) leads to unrealistic simulations that fail volume-based calibration. Default parameters for all three models reasonably approximate the mean and median of measured parameters, but fail to capture the true distribution shape, partly due to homogeneity when using default parameters. The results show that it is more effective to simulate with the default parameters provided by SUMO rather than using measurements of real-world distributions without additional calibration. Future work will investigate closing the loop between the measured real-world and SUMO distributions using traditional calibration tactics, as well as assess the impact of calibrated vs. default CF parameters on simulation outputs like fuel consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration of Microscopic Traffic Simulation in an Urban Environment Using GPS-Data On Vehicular Data Aggregation in Federated Learning Generalistic Assessments of the Potential of Medical Drones in Urban Environment Simulating Traffic Networks Calibrating Car-Following Models Using SUMO-in-the-Loop and Vehicle Trajectories From Roadside Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1