基于离线天气研究预报模式的微尺度大气模拟对并行大涡模拟模式强迫条件的评估与验证

Shuv Dey, Evan Mallen, B. Stone, Yogendra P Joshi
{"title":"基于离线天气研究预报模式的微尺度大气模拟对并行大涡模拟模式强迫条件的评估与验证","authors":"Shuv Dey, Evan Mallen, B. Stone, Yogendra P Joshi","doi":"10.1115/1.4062112","DOIUrl":null,"url":null,"abstract":"\n As the rate of urbanization increases, local vegetation is being replaced with man-made materials, causing increasingly adverse impacts on the surface-atmosphere energy balance. These negative effects can be simulated by modeling the urban landscapes in question; however, the main challenges of modeling urban thermal environments are the scale and resolution at which to perform such tasks. Current modeling of urban thermal environments is typically limited to either mesoscale (1 km to 2,000 km) or microscale (< 1 km) phenomena. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated. This coupled simulation can provide valuable insights about the flow behavior and energy transport between mesoscale and microscale interactions. The mesoscale to microscale boundary conditions are coupled together using simulated data from the Advanced Research Weather Research and Forecasting Model (WRF-ARW), a mesoscale numerical weather prediction software, and assimilating it into Parallelized Large-eddy Simulation Model (PALM), a computational fluid dynamics style (CFD-style) software designed for microscale atmospheric flows. The multiscale simulations are tested for grid sensitivity to variations in model input and control parameters, and then experimentally validated against distributed sensor measurements at the Georgia Institute of Technology (Georgia Tech) in Atlanta, GA. Validated microscale atmospheric models with heterogeneous domains can be used to project the thermal benefits of urban heat mitigation strategies and advise building energy usage modeling and policies.","PeriodicalId":326594,"journal":{"name":"ASME Journal of Engineering for Sustainable Buildings and Cities","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation and Validation of Microscale Atmospheric Modeling with Offline Weather Research and Forecasting Model to Parallelized Large-eddy Simulation Model Forcing Conditions\",\"authors\":\"Shuv Dey, Evan Mallen, B. Stone, Yogendra P Joshi\",\"doi\":\"10.1115/1.4062112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As the rate of urbanization increases, local vegetation is being replaced with man-made materials, causing increasingly adverse impacts on the surface-atmosphere energy balance. These negative effects can be simulated by modeling the urban landscapes in question; however, the main challenges of modeling urban thermal environments are the scale and resolution at which to perform such tasks. Current modeling of urban thermal environments is typically limited to either mesoscale (1 km to 2,000 km) or microscale (< 1 km) phenomena. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated. This coupled simulation can provide valuable insights about the flow behavior and energy transport between mesoscale and microscale interactions. The mesoscale to microscale boundary conditions are coupled together using simulated data from the Advanced Research Weather Research and Forecasting Model (WRF-ARW), a mesoscale numerical weather prediction software, and assimilating it into Parallelized Large-eddy Simulation Model (PALM), a computational fluid dynamics style (CFD-style) software designed for microscale atmospheric flows. The multiscale simulations are tested for grid sensitivity to variations in model input and control parameters, and then experimentally validated against distributed sensor measurements at the Georgia Institute of Technology (Georgia Tech) in Atlanta, GA. Validated microscale atmospheric models with heterogeneous domains can be used to project the thermal benefits of urban heat mitigation strategies and advise building energy usage modeling and policies.\",\"PeriodicalId\":326594,\"journal\":{\"name\":\"ASME Journal of Engineering for Sustainable Buildings and Cities\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Journal of Engineering for Sustainable Buildings and Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Engineering for Sustainable Buildings and Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着城市化速度的加快,当地植被正在被人工材料所取代,对地表-大气能量平衡的不利影响越来越大。这些负面影响可以通过对城市景观进行建模来模拟;然而,城市热环境建模的主要挑战是执行这些任务的规模和分辨率。目前对城市热环境的模拟通常局限于中尺度(1公里至2000公里)或微尺度(< 1公里)现象。在本工作中,研究并验证了一个用于单向上游耦合多尺度城市热环境模拟的开源框架。这种耦合模拟可以为中尺度和微观尺度相互作用之间的流动行为和能量传递提供有价值的见解。利用中尺度数值天气预报软件“先进研究天气研究与预报模式”(WRF-ARW)的模拟数据,将中尺度到微尺度的边界条件耦合在一起,并将其同化到并行大涡模拟模式(PALM)中,这是一种为微尺度大气流动设计的计算流体动力学风格(cfd风格)软件。多尺度模拟测试了网格对模型输入和控制参数变化的敏感性,然后在佐治亚州亚特兰大的佐治亚理工学院(Georgia Tech)对分布式传感器测量进行了实验验证。具有异质域的经过验证的微尺度大气模型可用于预测城市热缓解战略的热效益,并为建筑能源使用建模和政策提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation and Validation of Microscale Atmospheric Modeling with Offline Weather Research and Forecasting Model to Parallelized Large-eddy Simulation Model Forcing Conditions
As the rate of urbanization increases, local vegetation is being replaced with man-made materials, causing increasingly adverse impacts on the surface-atmosphere energy balance. These negative effects can be simulated by modeling the urban landscapes in question; however, the main challenges of modeling urban thermal environments are the scale and resolution at which to perform such tasks. Current modeling of urban thermal environments is typically limited to either mesoscale (1 km to 2,000 km) or microscale (< 1 km) phenomena. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated. This coupled simulation can provide valuable insights about the flow behavior and energy transport between mesoscale and microscale interactions. The mesoscale to microscale boundary conditions are coupled together using simulated data from the Advanced Research Weather Research and Forecasting Model (WRF-ARW), a mesoscale numerical weather prediction software, and assimilating it into Parallelized Large-eddy Simulation Model (PALM), a computational fluid dynamics style (CFD-style) software designed for microscale atmospheric flows. The multiscale simulations are tested for grid sensitivity to variations in model input and control parameters, and then experimentally validated against distributed sensor measurements at the Georgia Institute of Technology (Georgia Tech) in Atlanta, GA. Validated microscale atmospheric models with heterogeneous domains can be used to project the thermal benefits of urban heat mitigation strategies and advise building energy usage modeling and policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Building Design and Operating Strategies on Urban Heat Island Effects Part II: Sensitivity Analysis ASSESSING ENERGY SAVINGS: A COMPARATIVE STUDY OF REFLECTIVE ROOF COATINGS IN FOUR USA CLIMATE ZONES AN ELEMENTARY APPROACH TO EVALUATING THE THERMAL SELF-SUFFICIENCY OF RESIDENTIAL BUILDINGS WITH THERMAL ENERGY STORAGE A PROPOSED METHOD AND CASE STUDY OF WASTE HEAT RECOVERY IN AN INDUSTRIAL APPLICATION Impact of Building Operating Strategies on Urban Heat Island Effects Part I: Model Development and Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1