用于自主无线传感器节点的风能和水能收集

Joaquim A. R. Azevedo, Filipe E. S. Santos
{"title":"用于自主无线传感器节点的风能和水能收集","authors":"Joaquim A. R. Azevedo, Filipe E. S. Santos","doi":"10.1049/iet-cds.2011.0287","DOIUrl":null,"url":null,"abstract":"It is well-known that wireless sensor networks (WSNs) promise to revolutionise the way the authors can interact with the physical world. However, the deployment of these systems in practical environments is very limited because of power constraints. Systems based on solar, vibrational and thermal energy are the most used in WSN applications and only a few studies consider the wind for energy harvesting. Another important source of energy is the water flow. In the context of the WSN, it was found that there are practically no systems using such source. The purpose of this study is to evaluate the use of small-scale wind and hydro generators for energy harvesting to power wireless sensor nodes. For this purpose, the power coefficients and the output power of several horizontal-axis and Savonius wind turbines were determined. Systems based on Pelton and propeller turbines were constructed to evaluate the effect of some parameters in small-scale power generation.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Energy harvesting from wind and water for autonomous wireless sensor nodes\",\"authors\":\"Joaquim A. R. Azevedo, Filipe E. S. Santos\",\"doi\":\"10.1049/iet-cds.2011.0287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that wireless sensor networks (WSNs) promise to revolutionise the way the authors can interact with the physical world. However, the deployment of these systems in practical environments is very limited because of power constraints. Systems based on solar, vibrational and thermal energy are the most used in WSN applications and only a few studies consider the wind for energy harvesting. Another important source of energy is the water flow. In the context of the WSN, it was found that there are practically no systems using such source. The purpose of this study is to evaluate the use of small-scale wind and hydro generators for energy harvesting to power wireless sensor nodes. For this purpose, the power coefficients and the output power of several horizontal-axis and Savonius wind turbines were determined. Systems based on Pelton and propeller turbines were constructed to evaluate the effect of some parameters in small-scale power generation.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-cds.2011.0287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2011.0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

众所周知,无线传感器网络(WSNs)有望彻底改变作者与物理世界互动的方式。然而,由于功率限制,这些系统在实际环境中的部署非常有限。基于太阳能、振动和热能的系统是WSN应用中使用最多的,只有少数研究考虑风能用于能量收集。另一个重要的能源是水流。在无线传感器网络的背景下,发现几乎没有系统使用这种源。本研究的目的是评估使用小型风力发电机和水力发电机收集能量,为无线传感器节点供电。为此,确定了几台水平轴风力机和Savonius风力机的功率系数和输出功率。构建了基于Pelton和螺旋桨涡轮的系统,以评估一些参数对小型发电的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy harvesting from wind and water for autonomous wireless sensor nodes
It is well-known that wireless sensor networks (WSNs) promise to revolutionise the way the authors can interact with the physical world. However, the deployment of these systems in practical environments is very limited because of power constraints. Systems based on solar, vibrational and thermal energy are the most used in WSN applications and only a few studies consider the wind for energy harvesting. Another important source of energy is the water flow. In the context of the WSN, it was found that there are practically no systems using such source. The purpose of this study is to evaluate the use of small-scale wind and hydro generators for energy harvesting to power wireless sensor nodes. For this purpose, the power coefficients and the output power of several horizontal-axis and Savonius wind turbines were determined. Systems based on Pelton and propeller turbines were constructed to evaluate the effect of some parameters in small-scale power generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low-offset low-power and high-speed dynamic latch comparator with a preamplifier-enhanced stage Embedding delay-based physical unclonable functions in networks-on-chip Design of 10T SRAM cell with improved read performance and expanded write margin On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits Analytical model and simulation-based analysis of a work function engineered triple metal tunnel field-effect transistor device showing excellent device performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1