基于贝叶斯网络的传感器数据建模

Carla Silva, A. Rodrigues, A. Jorge, I. Dutra
{"title":"基于贝叶斯网络的传感器数据建模","authors":"Carla Silva, A. Rodrigues, A. Jorge, I. Dutra","doi":"10.1109/IAICT55358.2022.9887461","DOIUrl":null,"url":null,"abstract":"This research aims to extract knowledge of sensors behavior resorting to Bayesian networks (BNs) and dynamic Bayesian networks (DBNs), a time-based BN version. These two types of models belong to the group of probabilistic graphical models (PGMs). These graphical models can be very useful to get insights from data in order to improve sensor capabilities in the industry of fire detection systems, since it can provide the conditional dependence structure among various sensor variables. Relevant sensors with fire alerts were selected and studied at device level. We conduct a data fusion analysis since we deal with heterogeneous data sources, Remote Alert (RA) with sensor states and Condition Monitoring (CM) with numerical data. To achieve an accurate fusion of the data, a pipeline was designed to align both sources of data in a regular time interval. Furthermore, a change point detection (CPD) method was used to discretize the numerical variables. In addition, one-hot encoding was used to create binarized datasets and combine all data (RA+CM). Our modeling helps understanding the dependencies among the sensor variables, highlighting that individual devices of the same type can have a very different probabilistic behavior along the time, probably due to be installed in distinct regions. Moreover, the models helped capturing strange probabilistic sensor behavior such as a low probability of a NORMAL state happening given that states FIRE, WARNING and TROUBLE did not happen.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor data modeling with Bayesian networks\",\"authors\":\"Carla Silva, A. Rodrigues, A. Jorge, I. Dutra\",\"doi\":\"10.1109/IAICT55358.2022.9887461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to extract knowledge of sensors behavior resorting to Bayesian networks (BNs) and dynamic Bayesian networks (DBNs), a time-based BN version. These two types of models belong to the group of probabilistic graphical models (PGMs). These graphical models can be very useful to get insights from data in order to improve sensor capabilities in the industry of fire detection systems, since it can provide the conditional dependence structure among various sensor variables. Relevant sensors with fire alerts were selected and studied at device level. We conduct a data fusion analysis since we deal with heterogeneous data sources, Remote Alert (RA) with sensor states and Condition Monitoring (CM) with numerical data. To achieve an accurate fusion of the data, a pipeline was designed to align both sources of data in a regular time interval. Furthermore, a change point detection (CPD) method was used to discretize the numerical variables. In addition, one-hot encoding was used to create binarized datasets and combine all data (RA+CM). Our modeling helps understanding the dependencies among the sensor variables, highlighting that individual devices of the same type can have a very different probabilistic behavior along the time, probably due to be installed in distinct regions. Moreover, the models helped capturing strange probabilistic sensor behavior such as a low probability of a NORMAL state happening given that states FIRE, WARNING and TROUBLE did not happen.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过贝叶斯网络(BNs)和动态贝叶斯网络(DBNs)(一种基于时间的贝叶斯网络版本)提取传感器行为的知识。这两种类型的模型都属于概率图模型(PGMs)。这些图形模型可以非常有用地从数据中获得洞察力,以提高火灾探测系统行业中的传感器能力,因为它可以提供各种传感器变量之间的条件依赖结构。选取具有火灾报警功能的相关传感器,在设备层面进行研究。我们进行了数据融合分析,因为我们处理异构数据源,远程警报(RA)与传感器状态和状态监测(CM)与数值数据。为了实现数据的精确融合,设计了一个管道,以固定的时间间隔对齐两个数据源。采用变化点检测(CPD)方法对数值变量进行离散化处理。此外,采用一热编码创建二值化的数据集并合并所有数据(RA+CM)。我们的建模有助于理解传感器变量之间的依赖关系,强调同一类型的单个设备随着时间的推移可能具有非常不同的概率行为,这可能是由于安装在不同的区域。此外,这些模型还有助于捕捉奇怪的概率传感器行为,比如在FIRE、WARNING和TROUBLE状态没有发生的情况下,正常状态发生的概率很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor data modeling with Bayesian networks
This research aims to extract knowledge of sensors behavior resorting to Bayesian networks (BNs) and dynamic Bayesian networks (DBNs), a time-based BN version. These two types of models belong to the group of probabilistic graphical models (PGMs). These graphical models can be very useful to get insights from data in order to improve sensor capabilities in the industry of fire detection systems, since it can provide the conditional dependence structure among various sensor variables. Relevant sensors with fire alerts were selected and studied at device level. We conduct a data fusion analysis since we deal with heterogeneous data sources, Remote Alert (RA) with sensor states and Condition Monitoring (CM) with numerical data. To achieve an accurate fusion of the data, a pipeline was designed to align both sources of data in a regular time interval. Furthermore, a change point detection (CPD) method was used to discretize the numerical variables. In addition, one-hot encoding was used to create binarized datasets and combine all data (RA+CM). Our modeling helps understanding the dependencies among the sensor variables, highlighting that individual devices of the same type can have a very different probabilistic behavior along the time, probably due to be installed in distinct regions. Moreover, the models helped capturing strange probabilistic sensor behavior such as a low probability of a NORMAL state happening given that states FIRE, WARNING and TROUBLE did not happen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data Design of a Personal Digital Assistant for the Visually Challenged AutoSW: a new automated sliding window-based change point detection method for sensor data DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning Hardware Realization of Sigmoid and Hyperbolic Tangent Activation Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1