利用鲁棒多元统计技术预测风力发电机齿轮箱故障

Jamie L. Godwin, Peter C. Matthews
{"title":"利用鲁棒多元统计技术预测风力发电机齿轮箱故障","authors":"Jamie L. Godwin, Peter C. Matthews","doi":"10.1109/ICPHM.2013.6621428","DOIUrl":null,"url":null,"abstract":"In this paper we present a new methodology for the prognosis of a wind turbine gearbox. The statistically robust Mahalanobis distance was used to determine multivariate outliers within low frequency SCADA data without the need for manual labelling. Domain knowledge (meta-knowledge) was used to determine the multivariate vectors which encapsulate the condition of the wind turbine gearbox, providing a means to model anomalous gearbox behaviour whilst quantifying the severity of a monitored fault. A prognostic horizon of over 146 days was achieved using a new 3 degrees of freedom model, with a strong trend observed within the presented prognostic. This allowed for the quantification of fault severity, an estimation of the rate of fault development and also a means to quantify the quality and effectiveness of maintenance. In order to reduce noise inherent within SCADA data, an expert system was developed to transform the prognostic capability into actionable intelligence. This reduced the potential cognitive load placed upon the maintenance operator, whilst providing the knowledge required to optimise available maintenance resources. Due to the statistically robust nature of the approach, no gearbox fault data was required for training, enabling prognostic capability without the capital expense incurred through destructive testing. Furthermore, no additional capital expenditure is required due to data being collected from the pre-existing SCADA system available on all of the latest generation of wind turbines.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Prognosis of wind turbine gearbox failures by utilising robust multivariate statistical techniques\",\"authors\":\"Jamie L. Godwin, Peter C. Matthews\",\"doi\":\"10.1109/ICPHM.2013.6621428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new methodology for the prognosis of a wind turbine gearbox. The statistically robust Mahalanobis distance was used to determine multivariate outliers within low frequency SCADA data without the need for manual labelling. Domain knowledge (meta-knowledge) was used to determine the multivariate vectors which encapsulate the condition of the wind turbine gearbox, providing a means to model anomalous gearbox behaviour whilst quantifying the severity of a monitored fault. A prognostic horizon of over 146 days was achieved using a new 3 degrees of freedom model, with a strong trend observed within the presented prognostic. This allowed for the quantification of fault severity, an estimation of the rate of fault development and also a means to quantify the quality and effectiveness of maintenance. In order to reduce noise inherent within SCADA data, an expert system was developed to transform the prognostic capability into actionable intelligence. This reduced the potential cognitive load placed upon the maintenance operator, whilst providing the knowledge required to optimise available maintenance resources. Due to the statistically robust nature of the approach, no gearbox fault data was required for training, enabling prognostic capability without the capital expense incurred through destructive testing. Furthermore, no additional capital expenditure is required due to data being collected from the pre-existing SCADA system available on all of the latest generation of wind turbines.\",\"PeriodicalId\":178906,\"journal\":{\"name\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2013.6621428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种风电齿轮箱故障预测的新方法。统计上稳健的马氏距离用于确定低频SCADA数据中的多变量异常值,而无需手动标记。领域知识(元知识)用于确定包含风力涡轮机齿轮箱状况的多变量向量,提供了一种方法来模拟异常齿轮箱行为,同时量化监测故障的严重程度。使用新的3自由度模型实现了超过146天的预测范围,在提出的预测范围内观察到强烈的趋势。这允许对故障严重性进行量化,对故障发展的速度进行估计,同时也是对维护的质量和有效性进行量化的一种方法。为了降低SCADA数据中固有的噪声,开发了一个专家系统,将预测能力转化为可操作的情报。这减少了维护操作员的潜在认知负荷,同时提供了优化可用维护资源所需的知识。由于该方法的统计鲁棒性,不需要齿轮箱故障数据进行训练,从而实现了预测能力,而无需通过破坏性测试产生资本支出。此外,由于数据是从所有最新一代风力涡轮机上现有的SCADA系统收集的,因此不需要额外的资本支出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prognosis of wind turbine gearbox failures by utilising robust multivariate statistical techniques
In this paper we present a new methodology for the prognosis of a wind turbine gearbox. The statistically robust Mahalanobis distance was used to determine multivariate outliers within low frequency SCADA data without the need for manual labelling. Domain knowledge (meta-knowledge) was used to determine the multivariate vectors which encapsulate the condition of the wind turbine gearbox, providing a means to model anomalous gearbox behaviour whilst quantifying the severity of a monitored fault. A prognostic horizon of over 146 days was achieved using a new 3 degrees of freedom model, with a strong trend observed within the presented prognostic. This allowed for the quantification of fault severity, an estimation of the rate of fault development and also a means to quantify the quality and effectiveness of maintenance. In order to reduce noise inherent within SCADA data, an expert system was developed to transform the prognostic capability into actionable intelligence. This reduced the potential cognitive load placed upon the maintenance operator, whilst providing the knowledge required to optimise available maintenance resources. Due to the statistically robust nature of the approach, no gearbox fault data was required for training, enabling prognostic capability without the capital expense incurred through destructive testing. Furthermore, no additional capital expenditure is required due to data being collected from the pre-existing SCADA system available on all of the latest generation of wind turbines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1