图像分割中自注意的研究

Fude Cao, Chunguang Zheng, Limin Huang, Aihua Wang, Jiong Zhang, Feng Zhou, Haoxue Ju, Haitao Guo, Yuxia Du
{"title":"图像分割中自注意的研究","authors":"Fude Cao, Chunguang Zheng, Limin Huang, Aihua Wang, Jiong Zhang, Feng Zhou, Haoxue Ju, Haitao Guo, Yuxia Du","doi":"10.4018/jitr.298619","DOIUrl":null,"url":null,"abstract":"Although the traditional convolutional neural network is applied to image segmentation successfully, it has some limitations. That's the context information of the long-range on the image is not well captured. With the success of the introduction of self-attentional mechanisms in the field of natural language processing (NLP), people have tried to introduce the attention mechanism in the field of computer vision. It turns out that self-attention can really solve this long-range dependency problem. This paper is a summary on the application of self-attention to image segmentation in the past two years. And think about whether the self-attention module in this field can replace convolution operation in the future.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research of Self-Attention in Image Segmentation\",\"authors\":\"Fude Cao, Chunguang Zheng, Limin Huang, Aihua Wang, Jiong Zhang, Feng Zhou, Haoxue Ju, Haitao Guo, Yuxia Du\",\"doi\":\"10.4018/jitr.298619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the traditional convolutional neural network is applied to image segmentation successfully, it has some limitations. That's the context information of the long-range on the image is not well captured. With the success of the introduction of self-attentional mechanisms in the field of natural language processing (NLP), people have tried to introduce the attention mechanism in the field of computer vision. It turns out that self-attention can really solve this long-range dependency problem. This paper is a summary on the application of self-attention to image segmentation in the past two years. And think about whether the self-attention module in this field can replace convolution operation in the future.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.298619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.298619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的卷积神经网络虽然在图像分割中得到了成功的应用,但存在一定的局限性。这就是图像上远距离的背景信息没有被很好地捕捉到。随着自注意机制在自然语言处理(NLP)领域的成功引入,人们开始尝试在计算机视觉领域引入注意机制。事实证明,自我关注确实可以解决这种长期依赖问题。本文对近两年来自关注在图像分割中的应用进行了综述。并思考该领域的自注意模块能否在未来取代卷积运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of Self-Attention in Image Segmentation
Although the traditional convolutional neural network is applied to image segmentation successfully, it has some limitations. That's the context information of the long-range on the image is not well captured. With the success of the introduction of self-attentional mechanisms in the field of natural language processing (NLP), people have tried to introduce the attention mechanism in the field of computer vision. It turns out that self-attention can really solve this long-range dependency problem. This paper is a summary on the application of self-attention to image segmentation in the past two years. And think about whether the self-attention module in this field can replace convolution operation in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1