指令预计算与记忆的故障检测

D. Borodin, B. Juurlink
{"title":"指令预计算与记忆的故障检测","authors":"D. Borodin, B. Juurlink","doi":"10.1109/DATE.2010.5457081","DOIUrl":null,"url":null,"abstract":"Fault tolerance (FT) has become a major concern in computing systems. Instruction duplication has been proposed to verify application execution at run time. Two techniques, instruction memoization and precomputation, have been shown to improve the performance and fault coverage of duplication. This work shows that the combination of these two techniques is much more powerful than either one in isolation. In addition to performance, it improves the long-lasting transient and permanent fault coverage upon the memoization scheme. Compared to the precomputation scheme, it reduces the long-lasting transient and permanent fault coverage of 10.6% of the instructions, but covers 2.6 times as many instructions against shorter transient faults. On a system with 2 integer ALUs, the combined scheme reduces the performance degradation due to duplication by on average 27.3% and 22.2% compared to the precomputation and memoization-based techniques, respectively, with similar hardware requirements.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Instruction precomputation with memoization for fault detection\",\"authors\":\"D. Borodin, B. Juurlink\",\"doi\":\"10.1109/DATE.2010.5457081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault tolerance (FT) has become a major concern in computing systems. Instruction duplication has been proposed to verify application execution at run time. Two techniques, instruction memoization and precomputation, have been shown to improve the performance and fault coverage of duplication. This work shows that the combination of these two techniques is much more powerful than either one in isolation. In addition to performance, it improves the long-lasting transient and permanent fault coverage upon the memoization scheme. Compared to the precomputation scheme, it reduces the long-lasting transient and permanent fault coverage of 10.6% of the instructions, but covers 2.6 times as many instructions against shorter transient faults. On a system with 2 integer ALUs, the combined scheme reduces the performance degradation due to duplication by on average 27.3% and 22.2% compared to the precomputation and memoization-based techniques, respectively, with similar hardware requirements.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

容错(FT)已经成为计算系统中的一个主要问题。建议使用指令复制来验证应用程序在运行时的执行情况。指令记忆和预计算两种技术已被证明可以提高复制的性能和故障覆盖率。这项工作表明,这两种技术的结合比单独使用任何一种技术都要强大得多。除了性能之外,它还提高了记忆方案上的长期暂态和永久故障覆盖率。与预计算方案相比,该方案减少了10.6%的持久暂态和永久故障的指令覆盖率,但对较短的暂态故障的指令覆盖率是预计算方案的2.6倍。在具有2个整数alu的系统上,与硬件要求相似的预计算和基于记忆的技术相比,组合方案平均减少了27.3%和22.2%的由重复引起的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instruction precomputation with memoization for fault detection
Fault tolerance (FT) has become a major concern in computing systems. Instruction duplication has been proposed to verify application execution at run time. Two techniques, instruction memoization and precomputation, have been shown to improve the performance and fault coverage of duplication. This work shows that the combination of these two techniques is much more powerful than either one in isolation. In addition to performance, it improves the long-lasting transient and permanent fault coverage upon the memoization scheme. Compared to the precomputation scheme, it reduces the long-lasting transient and permanent fault coverage of 10.6% of the instructions, but covers 2.6 times as many instructions against shorter transient faults. On a system with 2 integer ALUs, the combined scheme reduces the performance degradation due to duplication by on average 27.3% and 22.2% compared to the precomputation and memoization-based techniques, respectively, with similar hardware requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High temperature polymer capacitors for aerospace applications Control network generator for latency insensitive designs Low-complexity high throughput VLSI architecture of soft-output ML MIMO detector Energy-efficient real-time task scheduling with temperature-dependent leakage A GPU based implementation of Center-Surround Distribution Distance for feature extraction and matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1