Foyzul Hassan, Mohammed Rokibul Alam Kotwal, M. N. Huda
{"title":"用性别独立和基于性别的HMM分类器抑制性别因素设计孟加拉语ASR","authors":"Foyzul Hassan, Mohammed Rokibul Alam Kotwal, M. N. Huda","doi":"10.1109/WICT.2011.6141432","DOIUrl":null,"url":null,"abstract":"Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.","PeriodicalId":178645,"journal":{"name":"2011 World Congress on Information and Communication Technologies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers\",\"authors\":\"Foyzul Hassan, Mohammed Rokibul Alam Kotwal, M. N. Huda\",\"doi\":\"10.1109/WICT.2011.6141432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.\",\"PeriodicalId\":178645,\"journal\":{\"name\":\"2011 World Congress on Information and Communication Technologies\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 World Congress on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2011.6141432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2011.6141432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers
Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.