用于无人机运动规划的短期视觉- imu融合记忆代理

Zhihan Xue, T. Gonsalves
{"title":"用于无人机运动规划的短期视觉- imu融合记忆代理","authors":"Zhihan Xue, T. Gonsalves","doi":"10.1109/ICIET55102.2022.9778991","DOIUrl":null,"url":null,"abstract":"This paper provides a deep reinforcement learning motion planning algorithm that uses time series image information as input. In this paper, we use a special visual state structure. This structure is composed of two kinds of sensor data. We combine the monocular visual information compressed by the variational autoencoder (VAE) and the inertial measurement unit (IMU) data. Then we use four consecutive combinations of the sensor data as the state of the reinforcement learning model. This method greatly simplifies the neural network complexity of continuous action space deep reinforcement learning on visual control tasks. After training in a drone simulation environment, this method has been proven to enable the drone to learn to avoid obstacles of various shapes and obstacles on the side blind corner of the camera.","PeriodicalId":371262,"journal":{"name":"2022 10th International Conference on Information and Education Technology (ICIET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Visual-IMU Fusion Memory Agent For Drone's Motion Planning\",\"authors\":\"Zhihan Xue, T. Gonsalves\",\"doi\":\"10.1109/ICIET55102.2022.9778991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a deep reinforcement learning motion planning algorithm that uses time series image information as input. In this paper, we use a special visual state structure. This structure is composed of two kinds of sensor data. We combine the monocular visual information compressed by the variational autoencoder (VAE) and the inertial measurement unit (IMU) data. Then we use four consecutive combinations of the sensor data as the state of the reinforcement learning model. This method greatly simplifies the neural network complexity of continuous action space deep reinforcement learning on visual control tasks. After training in a drone simulation environment, this method has been proven to enable the drone to learn to avoid obstacles of various shapes and obstacles on the side blind corner of the camera.\",\"PeriodicalId\":371262,\"journal\":{\"name\":\"2022 10th International Conference on Information and Education Technology (ICIET)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Conference on Information and Education Technology (ICIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIET55102.2022.9778991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Information and Education Technology (ICIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIET55102.2022.9778991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种以时间序列图像信息为输入的深度强化学习运动规划算法。在本文中,我们使用了一种特殊的视觉状态结构。该结构由两种传感器数据组成。我们将变分自编码器(VAE)压缩后的单目视觉信息与惯性测量单元(IMU)数据相结合。然后我们使用四个连续的传感器数据组合作为强化学习模型的状态。该方法极大地简化了连续动作空间深度强化学习在视觉控制任务上的神经网络复杂度。经过无人机模拟环境的训练,该方法已被证明可以使无人机学会避开各种形状的障碍物和摄像机侧盲角上的障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-Term Visual-IMU Fusion Memory Agent For Drone's Motion Planning
This paper provides a deep reinforcement learning motion planning algorithm that uses time series image information as input. In this paper, we use a special visual state structure. This structure is composed of two kinds of sensor data. We combine the monocular visual information compressed by the variational autoencoder (VAE) and the inertial measurement unit (IMU) data. Then we use four consecutive combinations of the sensor data as the state of the reinforcement learning model. This method greatly simplifies the neural network complexity of continuous action space deep reinforcement learning on visual control tasks. After training in a drone simulation environment, this method has been proven to enable the drone to learn to avoid obstacles of various shapes and obstacles on the side blind corner of the camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reforms to Teaching Practices in College Human Resource Management Courses Based on Integration with Regional Industries Recognizing Objects from on-Board Vehicle Footage to Build an Educational Foundation for Undergraduate Research in Computer Vision An AI Mock-interview Platform for Interview Performance Analysis Gender Inequity in Engineering Higher Education: A Case Study of an American University in a Middle Eastern Country Designing a Teaching Model in Pharmacotherapeutics Course to Improve Learning Outcomes Through Web-Based Learning for Pharmacy Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1