F. A. Elmisery, A. Khalil, A. Salama, H. F. Hammed
{"title":"基于fpga的离散阿拉伯语语音识别HMM","authors":"F. A. Elmisery, A. Khalil, A. Salama, H. F. Hammed","doi":"10.1109/ICM.2003.237884","DOIUrl":null,"url":null,"abstract":"In this work we propose a speech recognition system for Arabic speech based on a hardware/software co-design implementation approach. Speech recognition is a computationally demanding task, specially the pattern matching stage. The Hidden Markov Model (HMM) is considered the most powerful modeling and matching technique in the different speech recognition tasks. Implementing the pattern matching algorithm, which is time consuming, using dedicated hardware will speed up the recognition process. In this paper, a pattern matching algorithm based on HMM is implemented using Field Programmable Gate Array (FPGA). The forward algorithm, core of matching algorithm in HMM, is analyzed and modified to be more suitable for FPGA implementation. Implementation results showed that the recognition accuracy of the modified algorithm is very close to the classical algorithm with the gain of achieving higher speed and less occupied area in the FPGA. The proposed approach is used for isolated Arabic word recognition and achieved a recognition accuracy comparable with the powerful classical recognition system.","PeriodicalId":180690,"journal":{"name":"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A FPGA-based HMM for a discrete Arabic speech recognition system\",\"authors\":\"F. A. Elmisery, A. Khalil, A. Salama, H. F. Hammed\",\"doi\":\"10.1109/ICM.2003.237884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a speech recognition system for Arabic speech based on a hardware/software co-design implementation approach. Speech recognition is a computationally demanding task, specially the pattern matching stage. The Hidden Markov Model (HMM) is considered the most powerful modeling and matching technique in the different speech recognition tasks. Implementing the pattern matching algorithm, which is time consuming, using dedicated hardware will speed up the recognition process. In this paper, a pattern matching algorithm based on HMM is implemented using Field Programmable Gate Array (FPGA). The forward algorithm, core of matching algorithm in HMM, is analyzed and modified to be more suitable for FPGA implementation. Implementation results showed that the recognition accuracy of the modified algorithm is very close to the classical algorithm with the gain of achieving higher speed and less occupied area in the FPGA. The proposed approach is used for isolated Arabic word recognition and achieved a recognition accuracy comparable with the powerful classical recognition system.\",\"PeriodicalId\":180690,\"journal\":{\"name\":\"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2003.237884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2003.237884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A FPGA-based HMM for a discrete Arabic speech recognition system
In this work we propose a speech recognition system for Arabic speech based on a hardware/software co-design implementation approach. Speech recognition is a computationally demanding task, specially the pattern matching stage. The Hidden Markov Model (HMM) is considered the most powerful modeling and matching technique in the different speech recognition tasks. Implementing the pattern matching algorithm, which is time consuming, using dedicated hardware will speed up the recognition process. In this paper, a pattern matching algorithm based on HMM is implemented using Field Programmable Gate Array (FPGA). The forward algorithm, core of matching algorithm in HMM, is analyzed and modified to be more suitable for FPGA implementation. Implementation results showed that the recognition accuracy of the modified algorithm is very close to the classical algorithm with the gain of achieving higher speed and less occupied area in the FPGA. The proposed approach is used for isolated Arabic word recognition and achieved a recognition accuracy comparable with the powerful classical recognition system.