基于神经网络的移动机器人对象跟踪设计

Neta Larasati, T. Dewi, Y. Oktarina
{"title":"基于神经网络的移动机器人对象跟踪设计","authors":"Neta Larasati, T. Dewi, Y. Oktarina","doi":"10.18495/COMENGAPP.V6I1.189","DOIUrl":null,"url":null,"abstract":"Deciding the best method for robot navigation is the most important tasks in mobile robot design, defined as the robot's ability to reach the target or/and move around its environment safely using the installed sensors and/or predefined map. To achieve this objective, wall or object detection can be considered. It is common to derive kinematics and dynamics to design the controls system of the robot, however by giving intelligence system to the robot, the control system will provide better performance for robot navigation. One of the most applied artificial intelligence is neural networks, a good approach for sensors of mobile robot system that is difficult to be modeled with an accurate mathematical equations. Mostly discussed basic navigation of a mobile robot is wall following. Wall following robot has been used for many application not only in industrial as a transport robot but also in domestic or hospital. Two behaviors are designed in this paper, wall following and object following. Object following behavior is developed from wall following by utilizing data from 4 installed distance sensors. The leader robot as the target for the follower robot, therefore the follower robot will keep on trying reaching for the leader in a safe distance. The novelty of this research is in the sense of the simplicity of proposed method. The feasibility of our proposed design is proven by simulation where all the results shows the effectiveness of the proposed method.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Object Following Design for a Mobile Robot using Neural Network\",\"authors\":\"Neta Larasati, T. Dewi, Y. Oktarina\",\"doi\":\"10.18495/COMENGAPP.V6I1.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciding the best method for robot navigation is the most important tasks in mobile robot design, defined as the robot's ability to reach the target or/and move around its environment safely using the installed sensors and/or predefined map. To achieve this objective, wall or object detection can be considered. It is common to derive kinematics and dynamics to design the controls system of the robot, however by giving intelligence system to the robot, the control system will provide better performance for robot navigation. One of the most applied artificial intelligence is neural networks, a good approach for sensors of mobile robot system that is difficult to be modeled with an accurate mathematical equations. Mostly discussed basic navigation of a mobile robot is wall following. Wall following robot has been used for many application not only in industrial as a transport robot but also in domestic or hospital. Two behaviors are designed in this paper, wall following and object following. Object following behavior is developed from wall following by utilizing data from 4 installed distance sensors. The leader robot as the target for the follower robot, therefore the follower robot will keep on trying reaching for the leader in a safe distance. The novelty of this research is in the sense of the simplicity of proposed method. The feasibility of our proposed design is proven by simulation where all the results shows the effectiveness of the proposed method.\",\"PeriodicalId\":120500,\"journal\":{\"name\":\"Computer Engineering and Applications\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18495/COMENGAPP.V6I1.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18495/COMENGAPP.V6I1.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

确定机器人导航的最佳方法是移动机器人设计中最重要的任务,它的定义是机器人使用安装的传感器和/或预定义的地图安全到达目标或/并在其环境中移动的能力。为了实现这一目标,可以考虑墙壁或物体检测。通常通过运动学和动力学推导来设计机器人的控制系统,但通过赋予机器人智能系统,控制系统将为机器人导航提供更好的性能。神经网络是应用最广泛的人工智能之一,对于难以用精确数学方程建模的移动机器人传感器系统来说,神经网络是一种很好的方法。讨论最多的是移动机器人的基本导航。墙体跟随机器人不仅在工业上作为运输机器人,而且在家庭和医院中得到了广泛的应用。本文设计了墙体跟随和对象跟随两种行为。物体跟踪行为是利用安装的4个距离传感器的数据从墙壁跟踪发展而来的。由于领导机器人是跟随机器人的目标,因此跟随机器人会不断尝试在安全距离内接近领导机器人。这项研究的新颖之处在于所提出方法的简单性。仿真结果表明了所提方法的有效性,验证了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Following Design for a Mobile Robot using Neural Network
Deciding the best method for robot navigation is the most important tasks in mobile robot design, defined as the robot's ability to reach the target or/and move around its environment safely using the installed sensors and/or predefined map. To achieve this objective, wall or object detection can be considered. It is common to derive kinematics and dynamics to design the controls system of the robot, however by giving intelligence system to the robot, the control system will provide better performance for robot navigation. One of the most applied artificial intelligence is neural networks, a good approach for sensors of mobile robot system that is difficult to be modeled with an accurate mathematical equations. Mostly discussed basic navigation of a mobile robot is wall following. Wall following robot has been used for many application not only in industrial as a transport robot but also in domestic or hospital. Two behaviors are designed in this paper, wall following and object following. Object following behavior is developed from wall following by utilizing data from 4 installed distance sensors. The leader robot as the target for the follower robot, therefore the follower robot will keep on trying reaching for the leader in a safe distance. The novelty of this research is in the sense of the simplicity of proposed method. The feasibility of our proposed design is proven by simulation where all the results shows the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic-Ant Colony Optimization for Explorer-Follower Robot with Global Optimal Path Planning BLOB Analysis for Fruit Recognition and Detection Some Physical and Computational Features of Unloaded Power Transmission Lines' Switching-off Process A new method to improve feature selection with meta-heuristic algorithm and chaos theory Implementation Color Filtering and Harris Corner Method on Pattern Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1