面部表情幻觉的多分辨率Patch张量

K. Jia, S. Gong
{"title":"面部表情幻觉的多分辨率Patch张量","authors":"K. Jia, S. Gong","doi":"10.1109/CVPR.2006.196","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sequential approach to hallucinate/ synthesize high-resolution images of multiple facial expressions. We propose an idea of multi-resolution tensor for super-resolution, and decompose facial expression images into small local patches. We build a multi-resolution patch tensor across different facial expressions. By unifying the identity parameters and learning the subspace mappings across different resolutions and expressions, we simplify the facial expression hallucination as a problem of parameter recovery in a patch tensor space. We further add a high-frequency component residue using nonparametric patch learning from high-resolution training data. We integrate the sequential statistical modelling into a Bayesian framework, so that given any low-resolution facial image of a single expression, we are able to synthesize multiple facial expression images in high-resolution. We show promising experimental results from both facial expression database and live video sequences.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Multi-Resolution Patch Tensor for Facial Expression Hallucination\",\"authors\":\"K. Jia, S. Gong\",\"doi\":\"10.1109/CVPR.2006.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a sequential approach to hallucinate/ synthesize high-resolution images of multiple facial expressions. We propose an idea of multi-resolution tensor for super-resolution, and decompose facial expression images into small local patches. We build a multi-resolution patch tensor across different facial expressions. By unifying the identity parameters and learning the subspace mappings across different resolutions and expressions, we simplify the facial expression hallucination as a problem of parameter recovery in a patch tensor space. We further add a high-frequency component residue using nonparametric patch learning from high-resolution training data. We integrate the sequential statistical modelling into a Bayesian framework, so that given any low-resolution facial image of a single expression, we are able to synthesize multiple facial expression images in high-resolution. We show promising experimental results from both facial expression database and live video sequences.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们提出了一种序列方法来幻觉/合成多个面部表情的高分辨率图像。我们提出了多分辨率张量的超分辨率思想,并将面部表情图像分解成小的局部小块。我们在不同的面部表情之间建立了一个多分辨率的patch张量。通过统一身份参数和学习不同分辨率和表达式的子空间映射,将面部表情幻觉简化为一个斑块张量空间中的参数恢复问题。我们进一步使用非参数patch学习从高分辨率训练数据中添加高频成分残差。我们将序列统计建模整合到贝叶斯框架中,因此,给定任何低分辨率的单一表情面部图像,我们都能够合成高分辨率的多个面部表情图像。我们从面部表情数据库和实时视频序列中展示了有希望的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Resolution Patch Tensor for Facial Expression Hallucination
In this paper, we propose a sequential approach to hallucinate/ synthesize high-resolution images of multiple facial expressions. We propose an idea of multi-resolution tensor for super-resolution, and decompose facial expression images into small local patches. We build a multi-resolution patch tensor across different facial expressions. By unifying the identity parameters and learning the subspace mappings across different resolutions and expressions, we simplify the facial expression hallucination as a problem of parameter recovery in a patch tensor space. We further add a high-frequency component residue using nonparametric patch learning from high-resolution training data. We integrate the sequential statistical modelling into a Bayesian framework, so that given any low-resolution facial image of a single expression, we are able to synthesize multiple facial expression images in high-resolution. We show promising experimental results from both facial expression database and live video sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1