Yang Lv, H. Fang, Jian Xu, Qining Wang, Xiaoxu Zhang
{"title":"下肢与假肢耦合系统步态分析的异质模型","authors":"Yang Lv, H. Fang, Jian Xu, Qining Wang, Xiaoxu Zhang","doi":"10.1115/detc2020-22392","DOIUrl":null,"url":null,"abstract":"\n By considering the coupling effect between the healthy lower-limb and the passive prosthesis, this paper builds a heterogeneous dynamic model for gait analysis, where the motions of the healthy limb and the prosthesis are driven by the central pattern generator (CPG) and the hip joint swing, respectively. The foot-ground contact is modelled as the process of unilateral force reaction rather than the constraint to get a refined representation of the gait motion. The response of the heterogeneous model, solved by numerical calculation, is then analyzed by comparison with a real gait test. Preliminary results show that the heterogeneous model not only describes the amputee’s gait well but also reveals a new gait feature of period-doubling. Parameter analysis further indicates that the period-doubling gait will return to the single-period pattern by amplifying the vertical motion of the hip joint at the amputated side. This dynamic bifurcation, which mimics the process of hip swing adaption, provides new insight into the compensatory mechanism for lamely walking.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Heterogeneous Model for Gait Analysis of the Lower-Limb and the Prosthesis Coupled System\",\"authors\":\"Yang Lv, H. Fang, Jian Xu, Qining Wang, Xiaoxu Zhang\",\"doi\":\"10.1115/detc2020-22392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n By considering the coupling effect between the healthy lower-limb and the passive prosthesis, this paper builds a heterogeneous dynamic model for gait analysis, where the motions of the healthy limb and the prosthesis are driven by the central pattern generator (CPG) and the hip joint swing, respectively. The foot-ground contact is modelled as the process of unilateral force reaction rather than the constraint to get a refined representation of the gait motion. The response of the heterogeneous model, solved by numerical calculation, is then analyzed by comparison with a real gait test. Preliminary results show that the heterogeneous model not only describes the amputee’s gait well but also reveals a new gait feature of period-doubling. Parameter analysis further indicates that the period-doubling gait will return to the single-period pattern by amplifying the vertical motion of the hip joint at the amputated side. This dynamic bifurcation, which mimics the process of hip swing adaption, provides new insight into the compensatory mechanism for lamely walking.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"07 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Heterogeneous Model for Gait Analysis of the Lower-Limb and the Prosthesis Coupled System
By considering the coupling effect between the healthy lower-limb and the passive prosthesis, this paper builds a heterogeneous dynamic model for gait analysis, where the motions of the healthy limb and the prosthesis are driven by the central pattern generator (CPG) and the hip joint swing, respectively. The foot-ground contact is modelled as the process of unilateral force reaction rather than the constraint to get a refined representation of the gait motion. The response of the heterogeneous model, solved by numerical calculation, is then analyzed by comparison with a real gait test. Preliminary results show that the heterogeneous model not only describes the amputee’s gait well but also reveals a new gait feature of period-doubling. Parameter analysis further indicates that the period-doubling gait will return to the single-period pattern by amplifying the vertical motion of the hip joint at the amputated side. This dynamic bifurcation, which mimics the process of hip swing adaption, provides new insight into the compensatory mechanism for lamely walking.