{"title":"面向5G应用的悬臂式RF-MEMS并联开关设计与优化","authors":"Heba Saleh, Rayan Bajwa, I. Tekin, M. Yapici","doi":"10.1109/DTIS53253.2021.9505131","DOIUrl":null,"url":null,"abstract":"This work reports on the design and optimization of a low voltage shunt MEMS switch for 5G mobile applications. As opposed to clamped-clamped beams conventionally serving as RF-MEMS shunt switches, the present switch design utilizes a fixed-free cantilever beam in a shunt configuration to minimize the actuation voltage requirements. Moreover, RF performance parameters (ON-state insertion loss and OFF-state signal isolation) for the proposed switch design are optimized by means of extensive high-frequency simulations to enable the use of such devices in mm-wave regime. To critically analyze the key controlling factors affecting switch performance, a parameterized study on the geometrical parameters of the proposed topology is performed. The simulations were carried out using commercially available finite element solvers (CoventorWare® and HFSS) which validate the low-voltage operation of the reported switch with actuation voltage as low as 7.5V while maintaining the RF insertion loss and RF isolation values below -0.3dB and above -36dB, respectively, for frequencies up to 45GHz.","PeriodicalId":435982,"journal":{"name":"2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Optimization of Cantilever Based RF-MEMS Shunt Switch for 5G Applications\",\"authors\":\"Heba Saleh, Rayan Bajwa, I. Tekin, M. Yapici\",\"doi\":\"10.1109/DTIS53253.2021.9505131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports on the design and optimization of a low voltage shunt MEMS switch for 5G mobile applications. As opposed to clamped-clamped beams conventionally serving as RF-MEMS shunt switches, the present switch design utilizes a fixed-free cantilever beam in a shunt configuration to minimize the actuation voltage requirements. Moreover, RF performance parameters (ON-state insertion loss and OFF-state signal isolation) for the proposed switch design are optimized by means of extensive high-frequency simulations to enable the use of such devices in mm-wave regime. To critically analyze the key controlling factors affecting switch performance, a parameterized study on the geometrical parameters of the proposed topology is performed. The simulations were carried out using commercially available finite element solvers (CoventorWare® and HFSS) which validate the low-voltage operation of the reported switch with actuation voltage as low as 7.5V while maintaining the RF insertion loss and RF isolation values below -0.3dB and above -36dB, respectively, for frequencies up to 45GHz.\",\"PeriodicalId\":435982,\"journal\":{\"name\":\"2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIS53253.2021.9505131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS53253.2021.9505131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Optimization of Cantilever Based RF-MEMS Shunt Switch for 5G Applications
This work reports on the design and optimization of a low voltage shunt MEMS switch for 5G mobile applications. As opposed to clamped-clamped beams conventionally serving as RF-MEMS shunt switches, the present switch design utilizes a fixed-free cantilever beam in a shunt configuration to minimize the actuation voltage requirements. Moreover, RF performance parameters (ON-state insertion loss and OFF-state signal isolation) for the proposed switch design are optimized by means of extensive high-frequency simulations to enable the use of such devices in mm-wave regime. To critically analyze the key controlling factors affecting switch performance, a parameterized study on the geometrical parameters of the proposed topology is performed. The simulations were carried out using commercially available finite element solvers (CoventorWare® and HFSS) which validate the low-voltage operation of the reported switch with actuation voltage as low as 7.5V while maintaining the RF insertion loss and RF isolation values below -0.3dB and above -36dB, respectively, for frequencies up to 45GHz.